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ABSTRACT

The security of a Multivariate Public-Key Cryptosystem (MPKC)
depends on the complexity of solving Multivariate Quadratic (MQ) equa-
tions over finite fields, also known as the MQ problem. In this study, we
propose a new approach to solving the system of MQ equations based
on the Macaulay matrix, which is constructed from the coefficients of
these equations. This approach works on zero coefficients for different
variables (monomials) and random coefficients for other monomials by
applying the one-step Gaussian elimination to obtain a univariate equa-
tion.

Keywords: Multivariate Public-Key Cryptosystem, Multivariate Quadratic
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1 INTRODUCTION

In an era where information technology is highly demanded, the transmission
of information via the internet becomes crucial where all processes, transac-
tions, or communications are through public channels. Public-key cryptog-
raphy (PKC) is one of the fundamental tools that can secure this situation.
The security of the current PKC is based on two hard mathematical problems
known as the integer factorization problem and the discrete logarithm prob-
lem. These two problems were proven to be solved in polynomial time once
a quantum computer existed. Therefore, the formulation of robust alternatives
to the current cryptosystems that are able to resist quantum computing-based
attacks is needed. Among such alternatives, multivariate cryptography is one
of the preferences that seems promising to be able to resist against quantum
computer attacks.

Multivariate cryptography is based on the hard mathematical problem of
solving a system of multivariate polynomials. According to current research,
multivariate cryptosystems are all based on the Multivariate Quadratic (MQ)
system (Ding et al., 2020). The MQ problem is proved to be NP-hard (Nonde-
terministic polynomial-time) (Fraenkel and Yesha, 1979; Garey and Johnson,
1979), and it seems that using quantum computers will not provide any ben-
efits to solving it (Barker et al., 2021). However, the NP-hard situation does
not prove the in existence of certain polynomials which would render the MQ
problem solvable.

In the case of the overdetermined MQ polynomial system, several algo-
rithms are acknowledged to solve the system. Among these algorithms are
Grobner-basis computation (Faugère, 1999, 2002), linearization (Buchmann
et al., 2009; Courtois et al., 2000; Wang et al., 2022) and algorithms based on
SAT-solvers (Bard et al., 2007). As a result, one can assess an overdetermined
system that can be implemented as a Multivariate Public Key Cryptosystem
(MPKC). Currently, there are many MPKCs such as SimpleMatrix Encryp-
tion (Petzoldt et al., 2016; Tao et al., 2013, 2015), variants of Hidden Field
Encryption (Faugère and Joux, 2003; Ping et al., 2017), and Extension Field
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Cancellation (Chakraborty et al., 2021; Smith-Tone and Verbel, 2020).

This paper focuses on producing methods for assessing the security of
MPKC. We are motivated in this direction because there might be certain struc-
tures of equations that will result in MPKC to be insecure, that is we study the
problem of solving certain classes of multivariate polynomial equations.

Contribution. This paper proposed a new approach based on linear alge-
bra techniques known as the one-step Gaussian elimination. We also illustrate
a numerical example solving the polynomial system p(1)(x) = . . . = p(m)(x) =
0, which would obtaining the candidates solution for x = (x1, . . . , xn). This
research differs from previous works in 2 aspects:

• The one-step gauss elimination presents a new process to obtain the can-
didates’ solution.

• The strategies in manipulating the structure of the Macaulay matrix.

This paper is structured as follows. Firstly, the preliminaries of fundamen-
tal definitions and concepts are presented in section 2. Followed by the nu-
merical illustration in Section 3. Finally, the conclusion is provided in Section
4.

2 PRELIMINARIES

In this section, fundamental definitions and concepts used in this paper are
discussed. MPKC involved the problem of solving systems of multivariate
quadratic polynomials where the number of equations in the system is denoted
by m and the number of variables is denoted by n.

Definition 1. (Multivariate Quadratic Polynomials) Let F = Fq be a finite field
with q elements. We denote m as the number of equations and n as the number
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of variables. A system P = (p1, . . . , pm) of multivariate quadratic polynomials
is defined as

p1(x1, . . . , xn) =
n

∑

i=1

n

∑

j=1

c
(1)
ij ⋅ xixj +

n

∑

i=1

c
(1)
i ⋅ xi + c

(1)
0

p2(x1, . . . , xn) =
n

∑

i=1

n

∑

j=1

c
(2)
ij ⋅ xixj +

n

∑

i=1

c
(2)
i ⋅ xi + c

(2)
0

⋮

pm(x1, . . . , xn) =
n

∑

i=1

n

∑

j=1

c
(m)
ij ⋅ xixj +

n

∑

i=1

c
(m)
i ⋅ xi + c

(m)
0 .

Definition 2. Let P(x1, . . . , xn) be a system of multivariate quadratic poly-
nomials.

a) We define the lexicographical ordering of monomials are listed in the
same order in which the monomials (omitted the value of coefficients)
would exist in terms of words in alphabet consisting of x1, x2, . . . , xn
letters (Koblitz et al., 1998).

b) We define the chosen-lexicographical ordering of monomials are listed
from two variables to a single variable and subject to the priority of
solving a variable.

Example 2.1. a) Let P(x1, x2, x3, x4) = 5x4x2 + 3x23 + 2x3x4 + 2x3x1 +
3x21 + x1 + x

2
4 + 4x3x2. The polynomial is rewritten as

P(x1, . . . , x4) = 3x
2
1 + 2x1x3 + x1 + 4x2x3 + 5x2x4 + 3x

2
3 + 2x3x4 + x

2
4

under the lexicographical ordering.

b) The example describe in a) is rewritten as

P(x1, . . . , x4) = 2x1x3 + 4x2x3 + 5x2x4 + 2x3x4 + 3x
2
1 + x1 + 3x

2
3 + x

2
4

under the chosen-lexicographical ordering.

For this study, Definition b) will be used throughout the process of trans-
forming the system of polynomials into the Macaulay matrix to be solved using
Gaussian elimination.
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The chosen-lexicographical ordering of monomials reflexes the priority of
solving a variable. As an illustration, assume x3 to be eliminated first. A
univariate polynomial in terms of x3 with a degree at most d is obtained. Then,
one solves the univariate polynomial over the finite field. Hence, the possible
value(s) of x3 are obtained. To this end, we will now substitute x3 in order to
obtain the polynomials with fewer variables.

2.1 The Multivariate Quadratic Problem

In this section, we state definitions and theorems related to solving Multivariate
Quadratic (MQ) equations.

Definition 3. (Ding et al., 2020) (Problem of Solving Polynomial Systems
(PoSSo)) Let F = Fq be a finite field with q elements. Given a system P =
(p1(x), . . . , pm(x)) of m multivariate quadratic polynomials in n variables,
find a vector x = (x1, . . . , xn) such that

p1(x) = . . . = pm(x) = 0.

The Polynomial System Solving is known as NP-hard even if the input
polynomials are quadratics. This PoSSo is also called MQ.

The following theorems imply that every system of MQ can be simplified
to an illustration in which the polynomial system is given in the standard form.

Theorem 2.1. (Ding et al., 2020) Let F be a finite field with q elements and de-

gree d < q. Then, there exist (
n + d − 1

d
)monomials of degree d in F[x1, . . . , xn].

The number of monomials of degree ≤ d in F[x1, . . . , xn] is given by (
n + d

d
).

Proof.
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1. The number of monomials of degree d is obtain by choosing d out of n
element of x1, . . . , xn, with repetition.

2. The elements in polynomial of degree ≤ d are elements from the set
{x1, . . . , xn,1}, with repetition.

◻

Example 2.2. Let the degree d = 2 and n = 2. Then, the elements consist of

x1 and x2. The number of monomials of degree 2 is (
3

2
) = 3 in F[x1, x2]. The

monomials involve are x1x2, x
2
1, and x22. While the polynomial of degree ≤ 2

and total number of monomials are (
4

2
) = 6 consists of 2 elements {x1, x2}

are x1x2, x
2
1, x1, x

2
2, x2 and c, where c is a constant of polynomial.

Theorem 2.2. The number of monomials of degree ≤ d in Fq with q elements

is given by (
n + d

d
). The number of monomials with degree d with different

elements is given by (
n

d
).

Proof.

1. The total number of monomials of degree ≤ d is according to n elements
from the set {x1, . . . , xn,1}, with repetition.

2. The total number of monomials of degree ≤ d is according to n elements
from the set {x1, . . . , xn,1}, without repetition.

◻

Example 2.3. Let d = 2 and n = 3. Then, the elements are x1, x2, and x3.

Thus, the total number of monomials is (
5

2
) = 10 elements. The monomi-

als obtained are x1x2, x1x3, x2x3, x
2
1, x1, x

2
2, x2, x

2
3, x3, c. Whilst, the num-

ber of different elements as a monomial with degree d is (
3

2
) = 3 which are

x1x2, x1x3 and x2x3, without repetition.
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In order to solve a system of MQ polynomial equations, we incorporate
the polynomials in the Macaulay matrix that is constructed from the equations
(p1(x), . . . , pm(x)) = 0 (Definition 3) and it is reduced by a reduction algo-
rithm known as Gaussian elimination. Then, the number of the monomials of

degree ≤ d is (
n + d

d
), that is the number of column vectors in the Macaulay

matrix M .

Here, the Macaulay matrix M of degree d with respect to p(x) = p1(x), . . . , pm(x)
is defined as follows.

Definition 4. (Macaulay Matrix) The Macaulay matrix M ∈ Fm×n of degree d
contains the coefficient vectors of the polynomials pi(x) where i ∈ {1, . . . ,m}
as its rows. Define the matrix M as

M =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

p1(x)
p2(x)
⋮

pm(x)

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

where every polynomials pi(x1, . . . , xn) for i = 1, . . . ,m.

Algorithm 1 shows the general process of solving Multivariate Quadratic
polynomials using Gaussian elimination.
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Algorithm 1 Solving the Multivariate Quadratic polynomials
Input: The Multivariate Quadratic system consists of m quadratic polynomial
P = (p1(x), . . . , pm(x)) in n variables of (x1, . . . , xn) and coefficients in a
finite field Fq.
Output: The solution in Fq of the system of the equations p1(x) = . . . =
pm(x) = 0.

1. Linearize: Consider the sequence of monomial based on chosen-
lexicographical ordering (Definition 2 b)) in the variables xixj and xi.
The ordering of the monomials of polynomial P must be containing sin-
gle variables (i.e. xi) is eliminated last.

2. Organize: Generate the Macaulay matrix M based on Definition 4.

3. Solve: Perform Gauss elimination on the system M . Assume that this
step yields one last non-zero univariate polynomial equation in some
variable xn. Find the root of this equation in the underlying finite field.

4. Repeat: Substitute the value obtain in Step 3 into the system P and
simplify the equations. Repeat the process to solve for other variables.

3 THE ATTACK

In this section, we construct the Organized Gaussian Elimination(OGE) to il-
lustrate the proposed method. The process of OGE is the modification matrix
to rearrange the columns of two different variables of monomials as identified
coefficients.

Organized Gaussian Elimination: In order to obtain a univariate equa-
tion using one-step Gaussian elimination, we strategies the column vectors of
the Macaulay matrix with variables {xixj} as i, j = 1, . . . , n to be studied.
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Algorithm 2 Organized Gaussian Elimination with Column of Two Different
Variables
Input: The Macaulay matrix M (Definition 4).
Output: The potential solutions of x = {x1, . . . , xn}.

1. Setting the column vectors of matrix M with two different variables
{xixj} as the set of zeroes coefficient.

2. Apply one-step Gaussian elimination and assume this process will ob-
tain the last non-zero row of a univariate equation.

3. Solve the equation to obtain the variable in step 2 and substitute the value
into the matrix M .

4. Update and simplify the matrix M and repeat the process from the step
2 to step 4 and solve other variables {xn−1, . . . , x1}.

3.1 Cryptanalysis of Multivariate Quadratic Polynomial

Cryptanalysis of the MQ polynomial is to obtain the value of candidates for
plaintext which gives zero for each equation m in the polynomial. The pro-
cess of row elimination has the opportunity for the last row to represent the
univariate equation.

We considered the column vector of two different variables with degree
two {xixj} based on the following procedures and strategies. The proposed
procedure is as follows:

Step 1: Define the MQ system of equations over the finite field F is a set of m
polynomial equations of degree at most 2 in F[x1, . . . , xn] of the form:

P(x) =

⎧
⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪
⎩

p1(x1, . . . , xn) = 0
p2(x1, . . . , xn) = 0

⋮

pm(x1, . . . , xn) = 0

(1)
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where for every k ∈ 1, . . . ,m, the system can be determine in the form
of

Pk(x1, . . . , xn) = ∑

1≤i≤j≤n

c
(k)
ij ⋅ xixj + c

(k)
i ⋅ xi + c

(k)
0

with c(k) in finite field F.

Step 2: Form the Macaulay matrix M of the initial system P(x).

M =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

p1(x)
p2(x)
⋮

pm(x)

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

=

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

coeff(p1, c1) coeff(p1, c2) ⋯ coeff(p1, cn+d)
coeff(p2, c1) coeff(p2, c1) ⋯ coeff(p2, cn+d)

⋮ ⋮ ⋱ ⋮

coeff(pm, c1) coeff(pm, c1) ⋯ coeff(pm, cn+d)

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

=

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

c11 c12 ⋯ c1(n+d)
c21 c22 ⋯ c2(n+d)
⋮ ⋮ ⋱ ⋮

cm1 cm2 ⋯ cm(n+d)

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

Step 3: Apply the process of Gaussian Elimination (GE) to the Macaulay matrix
M . This one-step GE will obtain a new matrix which resulting the last
non-zero univariate equation form. Solving this equation will obtain the
value of variable xn.

Step 4: Substitute the value obtained into the original system in step 1 and solve
for xn−1. Repeat step 2 until obtaining x1.

The OGE demonstrates the benefits of using zero coefficients on mono-
mials of two different variables xixj where i, j = 1, . . . , n. Subsequently, by
analyzing the column space of zero monomials using one-step GE, we manage
to obtain the last non-zero univariate equation.

Case: Zero coefficients of two different monomials
Set the column vectors of (

n

d
) are zero elements for two different variables
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for monomial degree 2 of {xixj} and the column vectors of (
n + d

d
) − (

n

d
)

represent by R which is random coefficient < q, then the Macaulay matrix M
can be rewritten as

M =

x1x2 x1x3 . . . xixj x21 x1 . . . x2n xn 1

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎣

⎛

⎜
⎜
⎜

⎝

⎞

⎟
⎟
⎟

⎠

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎦

0 0 . . . 0 R R R R R R
0 0 . . . 0 R R R R R R
⋮ ⋮ ⋱ ⋮ R R R R R R
0 0 . . . 0 R R R R R R

3.2 Random Example

For implementation purposes, an example is presented using a random number
for a system P of multivariate quadratic polynomials of Fq.

Consider a system of six quadratic equations (m = 6) in n = 3 variables,
x = {x1, x2, x3} over F17 (the finite field with 17 elements).The system P is
given by

P(x) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪
⎩

0x1x2 + 0x1x3 + 0x2x3 + x21 + 15x1 + 12x
2
2 + 7x2 + 11x

2
3 + 8x3 + 0

0x1x2 + 0x1x3 + 0x2x3 + 9x21 + 1x1 + 0x
2
2 + 9x2 + 3x

2
3 + 0x3 + 12

0x1x2 + 0x1x3 + 0x2x3 + 0x21 + 3x1 + 1x
2
2 + 6x2 + 6x

2
3 + 16x3 + 15

0x1x2 + 0x1x3 + 0x2x3 + 12x21 + 4x1 + 4x
2
2 + 5x2 + 5x

2
3 + 3x3 + 13

0x1x2 + 0x1x3 + 0x2x3 + 3x21 + 6x1 + 5x
2
2 + 6x2 + 10x

2
3 + 3x3 + 5

0x1x2 + 0x1x3 + 0x2x3 + 3x21 + 15x1 + 9x
2
2 + 16x2 + 9x

2
3 + 6x3 + 11

Step 1: Setting the system P in the form of

P(x) =

⎧
⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪
⎩

p1(x1, . . . , xn) = 0
p2(x1, . . . , xn) = 0

⋮

pm(x1, . . . , xn) = 0

(2)
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Step 2: Form the Macaulay matrix M of the system P.

M =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

p1(x)
p2(x)
⋮

pm(x)

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

=

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

c11 c12 ⋯ c1(n+d)
c21 c22 ⋯ c2(n+d)
⋮ ⋮ ⋱ ⋮

cm1 cm2 ⋯ cm(n+d)

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

=

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

x1x2 x1x3 x2x3 x21 x1 x22 x2 x23 x3 1

0 0 0 1 15 12 7 11 8 0
0 0 0 9 1 0 9 3 0 12
0 0 0 0 3 1 6 6 16 15
0 0 0 12 4 4 5 5 3 13
0 0 0 3 6 5 6 10 3 5
0 0 0 3 15 9 16 9 6 11

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

Step 3: Perform the process of Gaussian elimination and obtain the fol-
lowing matrix:

M̃ =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

x1x2 x1x3 x2x3 x21 x1 x22 x2 x23 x3 1

0 0 0 1 15 12 7 11 8 0
0 0 0 0 2 11 14 6 13 12
0 0 0 0 0 3 4 11 10 11
0 0 0 0 0 0 11 0 7 15
0 0 0 0 0 0 0 5 0 6
0 0 0 0 0 0 0 0 8 10

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

In the last row of the matrix M̃ , we can solve the univariate equation

8x3 + 10 = 0, (3)
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leading to x3 = 3 in F17. By substitution x3 = 3 into the system P yield

M1 =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

x1x2 x21 x1 x22 x2 1

0 1 15 12 7 4
0 9 1 0 9 5
0 0 3 1 6 15
0 12 4 4 5 16
0 3 6 5 6 2
0 3 15 9 16 8

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

Performing Gaussian elimination on M1, we obtain the solution of x2 = 6
and repeat the process of substitution yielding the solution of x1 = 5. There-
fore, we have found the solution (x1, x2, x3) = (5,6,3) of the original system
P(x1, x2, x3) = 0 over F17.

4 CONCLUSION

We presented a new approach for solving the Multivariate Quadratic problem
for an overdetermined system using one-step Gaussian elimination. Our pro-
posed method known as Organized Gaussian Elimination (OGE) eliminated
the two different variables (monomials) by setting them as zero coefficients.
We define a system with m multivariate quadratic equations in n variables,

then the proposed algorithm identified the system with the number of (
n + d

d
)

monomials in the finite field of Fq of x1, . . . , xn variables. Then, we generate
a Macaulay matrix M over Fq and perform one-step Gaussian elimination and
resulting in the form of a univariate equation. Finally, the potential value(s) of
solving variable is substituted to the original system and the remaining part of
the matrix performs the repeated process.
This paper only discusses solving multivariate quadratic polynomials of overde-
termined systems. However, the proposed algorithm can be generalized to
other constraints related to two different variables of monomials or other higher-
degree cases. Therefore, considerable future work is to analyze the complexity
of the methodology.
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