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ABSTRACT 

 

Lattice-based cryptography is one of the most promising alternatives 

for the survival of cryptography against quantum computer attacks. The 

Goldreich-Goldwasser-Halevi Scheme (GGH Scheme) is the first 

practical lattice-based cryptographic scheme due to its simplicity which 

offers efficiency. The security of this scheme is based on the Closest 

Vector Problem (CVP) instance where the CVP is proven as NP-hard 

lattice problem. Unfortunately, there are some critical flaws on its 

design which make the scheme exposed to some security threats. The 

obvious way to avoid the attacks is by increasing the lattice dimension 

which makes the scheme suffered from some efficiency issues. In this 

paper, we revisit the early development of the scheme and then 

followed by the fatal attacks on it. Moreover, we address the current 

versions of the scheme and evaluate whether these versions can survive 

against the fatal attacks or not. We discuss the strength and weaknesses 

of the GGH Scheme in terms of its security which could be used as a 

guidance for further improvement on the scheme to make it better and 

ideal to be deployed in post-quantum era. 
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1    INTRODUCTION 

 
One of the most promising post-quantum alternatives that immune to Shor’s 

quantum attack is lattice-based cryptography which utilizes classical distance 

minimization problems in lattice to design one-way trapdoor function and later 

being used to develop cryptographic scheme. The first lattice-based 

cryptographic scheme was proposed by Ajtai and Dwork in 1987 (referred to 

as AD-Scheme) which is theoretically proven to be secure under worst-case 

lattice scenario (Ajtai and Dwork, 1987). Unfortunately, the AD Scheme is 

considered as impractical beside successful attack on it by Nguyen and Stern 

in 1998 (Nguyen and Stern, 1998).  

The first practical scheme was proposed by Goldreich, Goldwasser and 

Halevi in 1997 (Goldreich et. al.,1997), referred to as GGH Scheme in this 

paper. The GGH Scheme is utilizing the Closest Vector Problem (CVP) and 

Shortest Basis Problem (SBP) as the underlying security core. Basically, the 

scheme is a lattice version of the famous McEliece’s code-based cryptographic 

scheme proposed in 1978 (McEliece, 1978). Compared to the McEliece’s 

Scheme, the GGH Scheme is considered practical due to its simplicity 

specially in key generation and encryption algorithms which could be done 

using simple algebraic operations. To build confidence on the security of the 

scheme, the inventors has published five challenges on the Internet, known as 

GGH Internet Challenges. In these challenges, five ciphertext that was 

encrypted using the GGH Scheme in the lattice dimensions of 200, 250, 300, 

350 and 400 were published. By using the provided public basis and threshold 

parameter of each challenge, cryptanalysts are invited to decrypt the published 

ciphertexts. 

The most devastating attack launched by Nguyen, P. Q (1999), referred 

to as Nguyen’s attack. The attack completely decrypted all the challenges 

except for the largest dimension. Since that, Nguyen (1999) suggested that the 

lattice dimension to be applied should be larger than 400 for allowing the 
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scheme to surpass the Nguyen’s attack. However, the implementation of large 

lattice dimension consequently reduces the efficiency and practicality of the 

scheme. The final challenge for lattice dimension 400 has been solved by Lee 

and Hahn in 2010 (Lee, Hahn 2010). Since that, the GGH Scheme seems ready 

to be officially declared as a dead cryptographic scheme. However, a new hope 

was emerged in 2012 when Yoshino and Kunihiro proposed a novel 

improvement (referred to as GGH-YK Scheme) on the GGH Scheme 

(Yoshino and Kunihiro, 2012). Later in 2014, Barros and Schechter made 

some enhancement on the practicality part of the GGH-YK Scheme and 

proposed a new version that known GGH-YK-M Scheme (de Barros and 

Schechter, 2014). Since that, there is no more notable attack on the scheme 

can be found in the literature. From that, we consider that the GGH Scheme 

has survived and evolved to its new version GGH-YK-M Scheme. 

This paper aims to review the early development of the GGH Scheme by 

focusing on the strength and weaknesses of its design. Then, we discuss the 

fatal attacks on the GGH Scheme by showing the weakness points that being 

exploited by the attacks. Furthermore, we address the corresponding 

improvement on the scheme. We evaluate whether the current version of the 

scheme is still prone to the fatal attack or not. However, efficiency issues of 

the GGH Scheme is not the main interest of this paper and will not be 

thoroughly discussed. Code-based improvement on the GGH Scheme also is 

beyond our scope. At the end of this paper, we summarize some important 

points related to the strength, weaknesses and challenges that need to be faced 

by the GGH-type scheme before it can be widely deployed in the post-quantum 

era. 

2    MATHEMATICAL BACKGROUNDS 

 

In this paper, all vectors will be considered as column vectors and represented 

by standard vector notation. For instance, �⃗� ∈ ℝ𝑚 is a column vector with 𝑚 

real entries. All matrices will be represented by capital latter. Basically, lattice 

is a set of discrete vectors in ℝ𝑚. It can be defined as follow. 
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Definition 2.1. (Hoffstein et. al., 2008). Let �⃗⃗�1, ⋯ , �⃗⃗�𝑛 ∈ ℝ𝑚 be a set of 

linearly independent vectors. A lattice ℒ generated by the vectors �⃗⃗�1, ⋯ , �⃗⃗�𝑛 is 

the set of all vectors formed by linear combinations of the vectors �⃗⃗�1, ⋯ , �⃗⃗�𝑛 

with integer coefficients. The lattice ℒ can be denoted as ℒ(�⃗⃗�1, ⋯ , �⃗⃗�𝑛) =

{�⃗� = ∑ 𝛼𝑖 �⃗⃗�𝑖
𝑛
𝑖=1  |  ∀𝛼𝑖 ∈ ℤ}. 

The set of linearly independent vectors (�⃗⃗�1, ⋯ , �⃗⃗�𝑛) is called a basis for the 

lattice ℒ(�⃗⃗�1, ⋯ , �⃗⃗�𝑛) and the vectors �⃗⃗�𝑖 in the lattice basis are called basis 

vectors. The number of basis vectors in the lattice basis is called the dimension 

of the lattice and denoted as dim(ℒ). For  ℒ(�⃗⃗�1, ⋯ , �⃗⃗�𝑛), the dim(ℒ) = 𝑛. The 

number of entries in the basis vectors �⃗⃗�𝑖 is called the rank of the lattice. For 

basis vectors �⃗⃗�𝑖 ∈ ℝ𝑚, each vector consists of 𝑚 real entries. If 𝑚 = 𝑛, then the 

lattice if referred to as a full-rank lattice. In this paper, we only consider full-

rank lattices. For convenience, a lattice basis is always represented as a matrix 

where each basis vectors becomes the column of the basis matrix in the same 

order. For instance, the basis (�⃗⃗�1, ⋯ , �⃗⃗�𝑛) can be represented as follows: 

𝐵 = (�⃗⃗�1, �⃗⃗�2, ⋯ , �⃗⃗�𝑛) =

[
 
 
 
𝑏1,1

𝑏2,1

⋮
𝑏𝑛,1

    

𝑏1,2

𝑏2,2

⋮
𝑏𝑛,2

    

⋯
⋯
⋱
⋯

    

𝑏1,𝑛

𝑏2,𝑛

⋮
𝑏𝑛,𝑛]

 
 
 
 

where 𝑏𝑗,𝑖 ∈ �⃗⃗�𝑖 for all 𝑖, 𝑗 = 1,… , 𝑛. The lattice ℒ(�⃗⃗�1, ⋯ , �⃗⃗�𝑛) now can be 

conveniently represented as ℒ(𝐵). Every lattice ℒ  with more than one basis 

vectors has infinitely many bases. Any two different bases have the same 

number of basis vectors. 

Proposition 2.1. (Hoffstein et. al., 2008). Any two bases of lattice ℒ are 

related by a unimodular matrix with integer coefficients and determinant equal 

to ±1. 

Definition 2.2. (Goldreich et. al.,1997). Let 𝐵 be a real non-singular 𝑛 × 𝑛 

matrix. The dual-orthogonality defect of 𝐵 is defined as  
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orthdefect(𝐵)∗ =
∏ ‖�⃗⃗�𝑖′‖𝑖

|det(𝐵−1)|
= |det(𝐵)| ∙ ∏‖�⃗⃗�𝑖′‖

𝑖

 

 

where �⃗⃗�𝑖′ is the 𝑖-th row in 𝐵−1. 

The orthogonality level of lattice basis can be measured by using dual-

orthogonality defect. The orthdefect(𝐵)∗ = 1 if and only if the columns of 𝐵 

are orthogonal to one another and orthdefect(𝐵)∗ > 1 otherwise. 

Definition 2.3. The 𝑖-th minimum of a lattice ℒ, denoted as 𝜆𝑖(ℒ), is the 

radius of the smallest zero-centred ball containing at least 𝑖 linearly 

independent lattice vectors. 

Definition 2.4. Let ℒ be a lattice. The lattice gap, denoted as 𝑔𝑎𝑝(ℒ), is 

the real number such that 

 

𝑔𝑎𝑝(ℒ) =
𝜆2(ℒ)

𝜆1(ℒ)
 

Experimentally, the bigger the lattice gap, the easier to solve the underlying 

hard problem on it (Nguyen,1999). Most of the conjectured hard mathematical 

problems in lattice are related to distance minimization. 

Definition 2.5. (Micciancio, 2001). The distance between �⃗� ∈ ℝ𝑚 with a 

lattice ℒ(𝐵) is given as 𝑑𝑖𝑠𝑡(�⃗�, ℒ(𝐵)) = min{‖�⃗� − �⃗⃗⃗�‖  | �⃗� ∈ ℝ𝑛, �⃗⃗⃗� ∈ ℒ(𝐵)}. 

Definition 2.6. (Shortest Vector Problem (SVP)). Given a lattice ℒ. Find 

a shortest nonzero vector �⃗� ∈ ℒ that minimizes the Euclidean norm ‖�⃗⃗�‖. 

Definition 2.7. (Closest Vector Problem (CVP)). Given a basis 𝐵 for a 

lattice ℒ ⊂ ℝ𝑛 and a vector �⃗⃗⃗� ∈ ℝ𝑛. Find a lattice vector �⃗� ∈ ℒ(𝐵) that is closest 

to �⃗⃗⃗� which minimizes the Euclidean norm ‖�⃗⃗� − �⃗⃗⃗�‖. 

Definition 2.8. (Shortest Basis Problem (SBP)). Given a basis 𝐵 for a 

lattice ℒ ⊂ ℝ𝑛. Find the smallest basis 𝐵′ for the same lattice ℒ. 
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The CVP is known to be NP-hard, and the SVP is NP-hard under a certain 

randomized reduction hypothesis (Hoffstein et. al., 2008). 

 

3    THE GGH SCHEME 

 

The core idea behind the GGH Scheme is using the fact that a lattice may have 

infinitely many bases with different quality in terms of orthogonality. A basis 

with low orthogonality defect is considered as a good basis with reasonably 

orthogonal basis vectors. On the contrary, a basis with high orthogonality 

defect is considered as a bad basis with highly non-orthogonal basis vectors. 

Therefore, two different bases with different orthogonality defects will be used 

as private and public keys respectively. These bases generate the same lattice 

𝐿, i.e., ℒ(𝑅) = 𝐿 = ℒ(𝐵). 

Algorithm 1. The GGH Scheme (Goldreich et. al.,1997). 

Parameter Setup by Alice. 

Sets the value of the following parameters: 

i) Lattice dimension 𝑛. 

ii) Threshold parameter 𝜎. 

iii) Private key parameters 𝑙 ∈ ℤ and 𝑘 = 𝑙⌈√𝑛 + 1⌉. 

Key Generation by Alice. 

i) Generates an 𝑛-by-𝑛 perturbation matrix 𝑃 with entries 𝑝𝑖,𝑗 ∈
{−𝑙, … , 𝑙}. 

ii) Computes 𝑅 = 𝑘𝐼 + 𝑃 where 𝐼 is an 𝑛-by-𝑛 identity matrix. 

iii) Computes the dual orthogonality defect of 𝑅. If it is “close enough” 

to 1, then 𝑅 is accepted as a private key. Otherwise, generate 

another 𝑅. 

iv) Generates an 𝑛-by-𝑛 unimodular matrix 𝑇. 

v) Computes 𝐵 = 𝑅𝑇. 

vi) Computes the dual orthogonality defect of 𝐵. If it is “far enough” 

from 1, then 𝐵 is accepted as a public key. Otherwise, compute 

another 𝐵. 

vii) Sends the public basis 𝐵 with the public parameters {𝑛, 𝜎} to Bob. 
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viii) Keeps the other parameters with the private basis 𝑅 secretly. 

Encryption by Bob. 

i) Encodes the message into a vector �⃗⃗⃗� ∈ ℤ𝑛. 

ii) Generates an error 𝑒 ∈ ℤ𝑛 with entries {±𝜎}𝑛. 

iii) Computes the ciphertext 𝑐 ∈ ℤ𝑛 as 𝑐 = 𝐵�⃗⃗⃗� + 𝑒. 

iv) Sends the ciphertext 𝑐 to Alice. 

Decryption by Alice 

i) Computes the vector 𝑡 ∈ ℝ𝑛 as 𝑡 = 𝑅−1𝑐. 

ii) Forms an integral vector ⌊𝑡⌉ by rounding each entry of the vector 𝑡 

as ⌊𝑡𝑖⌉ for all 𝑖 = 1,… , 𝑛. 

iii) Computes a lattice vector �⃗�′ ∈ ℤ𝑛 as �⃗�′ = 𝑇⌊𝑡⌉. 

iv) Computes the error 𝑒 as 𝑒 = 𝑐 − �⃗�′. 

v) Computes the message �⃗⃗⃗� as �⃗⃗⃗� = 𝐵−1(𝑐 − 𝑒). 

 

In the encryption formula, 𝐵�⃗⃗⃗� is a lattice vector, denoted as �⃗�, since 𝐵 is 

a lattice basis and �⃗⃗⃗� is an integral vector. The vector �⃗� = 𝐵�⃗⃗⃗� then being 

perturbed 𝜎 away by error 𝑒 to form the ciphertext 𝑐. In this case, the security 

of the scheme lies on the CVP. To recover the message �⃗⃗⃗�, we need to solve 

the CVP by correcting the error 𝑒 and getting the lattice vector �⃗� = 𝐵�⃗⃗⃗� which 

is the closest lattice vector to the ciphertext 𝑐. This task can be done by using 

Babai’s round off method which works efficiently only if the basis being used 

is reasonably orthogonal. 

Since Alice has the reasonably orthogonal private basis 𝑅, then she is able 

to run the Babai’s round off method efficiently to get the correct closest vector 

�⃗�′ which is implicitly the lattice vector �⃗� = 𝐵�⃗⃗⃗� and proceeds to decode the 

secret message �⃗⃗⃗�.  The Babai’s round off method would not be able to solve 

the CVP by using public basis 𝐵 since it is a highly non-orthogonal basis. 

However, the orthogonality of this public basis can be improved by using 

lattice reduction algorithms. 

In this case, the security of the scheme lies on the SBP. By solving the 

SBP, the public basis 𝐵 can be transformed into its reduced form with better 

orthogonality. Then, it can be used in the Babai’s round off method to solve 

the underlying CVP and eventually recover the message �⃗⃗⃗�. To make the SBP 
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harder, larger lattice dimension should be used to make the lattice reduction 

algorithms inefficient. 

Another important factor which influences the successfulness of the 

decryption process is the threshold parameter 𝜎 which generates the entries of 

the error 𝑒. If the value is too big, then the ciphertext vector 𝑐 will be located 

too far from the lattice vector �⃗� = 𝐵�⃗⃗⃗� which increases the probability of 

decryption failure. If the value is too small, then ciphertext vector 𝑐 will be 

located too close to the lattice vector �⃗� = 𝐵�⃗⃗⃗� and makes attempt to attack the 

scheme easier. Therefore, the inventors of the GGH Scheme suggested 

suitable bounds for the threshold parameter 𝜎 in their paper (Goldreich et. 

al.,1997).  

To build confidence on the security of the scheme, the inventors 

published Internet GGH Challenges which invite any cryptanalyst to attack the 

scheme for lattice dimension 𝑛 = 200,250,300,350, 400. Most of the 

launched attacks were used the embedding technique which is considered as 

the best way to solve the CVP. The only succeed attack was on the lattice 

dimension 200. That means, by applying lattice dimension more than 200, the 

scheme conjectured to be secure, until Nguyen successfully showed that the 

embedding technique still can attack the scheme up to lattice dimension 400 

due to some major flaws on the design of the scheme which makes the 

underlying CVP instance can be reduced to SVP which is considered easier 

than the CVP. 

 

4    FATAL ATTACKS ON THE GGH SCHEME 

 

In 1999, Phong Q. Nguyen solved almost all the Internet GGH Challenges. 

We refer this attack as Nguyen’s attack. For the lattice dimension 𝑛 = 400, he 

discovered partial of the published ciphertext. He noticed that, the structure of 

the error 𝑒 ∈ {±𝜎}𝑛 could be exploited to get partial information of the message 

�⃗⃗⃗� from the corresponding ciphertext 𝑐. 
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From the partial information, he is able to simplify the underlying CVP 

instance to an easier instance with smaller error vector. By setting a vector 𝑠 ∈

{𝜎}𝑛, the congruence 𝑒 + 𝑠 ≡ 0⃗⃗(mod 2𝜎) holds. From the encryption 

formula, we have 𝑐 = 𝐵�⃗⃗⃗� + 𝑒. Then, 

𝑐 + 𝑠 = 𝐵�⃗⃗⃗� + 𝑒 + 𝑠 

𝑐 + 𝑠 ≡ 𝐵�⃗⃗⃗� + 𝑒 + 𝑠 (mod 2𝜎) 

𝑐 + 𝑠 ≡ 𝐵�⃗⃗⃗� (mod 2𝜎)                                                  (1) 

Basically, the congruence (1) is a linear congruence with single unknown 

value, �⃗⃗⃗� and has very few solutions. Assume that the congruence (1) is solved 

which means the value of �⃗⃗⃗� (mod 2𝜎) = �⃗⃗⃗�2𝜎 is known. The known �⃗⃗⃗�2𝜎 be 

inserted into the encryption formula as follows 

𝑐 − 𝐵�⃗⃗⃗�2𝜎 = 𝐵�⃗⃗⃗� − 𝐵�⃗⃗⃗�2𝜎 + 𝑒 

𝑐 − 𝐵�⃗⃗⃗�2𝜎 = 𝐵(�⃗⃗⃗� − �⃗⃗⃗�2𝜎) + 𝑒                                           (2) 

Note that 

�⃗⃗⃗� ≡ �⃗⃗⃗�2𝜎 (mod 2𝜎) 

which means that 

�⃗⃗⃗� − �⃗⃗⃗�2𝜎

2𝜎
= �⃗⃗⃗�′ ∈ ℤ𝑛 

�⃗⃗⃗� − �⃗⃗⃗�2𝜎 = 2𝜎�⃗⃗⃗�′                                                  (3) 

By inserting equation (3) into equation (2), we have 

𝑐 − 𝐵�⃗⃗⃗�2𝜎 = 2𝜎𝐵�⃗⃗⃗�′ + 𝑒 

𝑐 − 𝐵�⃗⃗⃗�2𝜎

2𝜎
  =

2𝜎𝐵�⃗⃗⃗�′

2𝜎
+

𝑒

2𝜎
  

𝑐 − 𝐵�⃗⃗⃗�2𝜎

2𝜎
  = 𝐵�⃗⃗⃗�′ +

𝑒

2𝜎
                                              (4) 

All values in the left side of the equation (4), are known. Therefore, the 

equation (4) is a new CVP instance where the left side of the equation is a 

known non-lattice vector, 𝐵�⃗⃗⃗�′ is an unknown lattice vector, and the right-most 

of the equation is a new error vector. Since 𝑒 ∈ {±𝜎}𝑛, therefore 

𝑒

2𝜎
= ±

𝜎

2𝜎
= ±

1

2
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which indicates that the new error vector is 
𝑒

2𝜎
∈ {±

1

2
}
𝑛

. 

The new error vector is much smaller compared to previous error vector. 

This makes the new CVP instance much easier to solve. Furthermore, Nguyen 

used the embedding technique to reduce the new CVP instance to SVP. In the 

embedding technique, a new 𝑛 + 1-dimensional basis 𝐵′ will be formed as 𝐵′ =

(𝑐
1
     �⃗⃗�1

0
     

⋯
⋯     �⃗⃗�𝑛

0
).  

From this basis, a new lattice ℒ(𝐵′) can be generated with dimension 

almost the same with the lattice ℒ(𝐵). Increasing the length of the shortest 

vector of ℒ(𝐵) makes the lattice gap of ℒ(𝐵′) larger, which results in an easier 

lattice reduction (Lee and Hahn, 2010). With this large lattice gap, Nguyen 

used lattice reduction algorithms such as the LLL, BKZ and pruning technique 

to solve the SVP and eventually solve the Internet GGH Challenges for lattice 

dimension 𝑛 = 200,250,300, 350. 

 In (Goldreich et. al., 1997), the authors had earlier assessed the 

security of the GGH Scheme against the embedding attack. They showed that 

the attack failed for dimension larger than 120. However, with simpler CVP 

instance Nguyen can launch the same attack even for larger lattice dimensions. 

That means, Nguyen’s attack succeeds only when the CVP instance is being 

simplified into its easier form.  

If we can prevent the simplification process, then the embedding attack 

should be conjectured as fail as well. To do so, we need to ensure that the 

partial information �⃗⃗⃗�2𝜎 could not be derived from the ciphertext 𝑐 as done by 

Nguyen. The structure of the error 𝑒 should be modified by making the entries 

no longer uniformly distributed as {±𝜎}𝑛. For that purpose, Nguyen proposed 

a remedy to his own attack by using an error 𝑒 ∈ {±𝜎,±(𝜎 − 1) }𝑛 which could 

avoid modulo reduction on the encryption formula (Nguyen,1999). However, 

he conjectured that this modification is still insecure since the structure of 𝑒 is 

still in a particular form which could be exploited by other kind of attack. His 

conjecture was true. 
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In 2010, Lee and Hahn showed that the improvement proposed by 

Nguyen is insecure. Not only that, they also have successfully solved the last 

Internet GGH Challenge for 𝑛 = 400 by combining their technique with 

Nguyen’s attack. We refer the attack as Lee-Hahn’s attack (Lee and Hahn, 

2010). The Nguyen’s attack was launched by reducing the size of the error 𝑒 

for simplifying the underlying CVP instance. Lee and Hahn used different 

approach by enlarging the error 𝑒 for the same purpose as well. Besides that, 

the Lee-Hahn’s attack also requires some knowledge on the secret message �⃗⃗⃗� 

to succeed. The more the information they gain, than the more effective their 

attack can perform. 

Without loss of generality, assume that the first 𝑘 entries of the message 

�⃗⃗⃗� are known. The message �⃗⃗⃗� now represented as �⃗⃗⃗� = (
�⃗⃗⃗�1

�⃗⃗⃗�2
) ∈ ℤ𝑛 where �⃗⃗⃗�1 

represents the known first 𝑘 entries and �⃗⃗⃗�2 represents the remaining unknown 

entries. Similarly, the public basis 𝐵 also has a new representation 𝐵 =

(𝐵1    𝐵2) where �⃗⃗�𝑖 ∈ 𝐵1 for 𝑖 = 1, … , 𝑘 and �⃗⃗�𝑖 ∈ 𝐵2 for 𝑖 = 𝑘 + 1,… , 𝑛. From the 

encryption formula, we have 

 

𝑐 = 𝐵�⃗⃗⃗� + 𝑒 

𝑐 = (𝐵1    𝐵2) (
�⃗⃗⃗�1

�⃗⃗⃗�2
) + 𝑒 

𝑐 = 𝐵1�⃗⃗⃗�1 + 𝐵2�⃗⃗⃗�2 + 𝑒 

𝑐 − 𝐵1�⃗⃗⃗�1 = 𝐵2�⃗⃗⃗�2 + 𝑒                                                  (5) 

Since the message �⃗⃗⃗�1 is assumed as known, then the left side of the 

equation (5) is known. Therefore, the equation (5) is a new CVP instance with 

the same error 𝑒 but with different lattice vector 𝐵2 �⃗⃗⃗�2 which is obviously 

smaller than the lattice vector �⃗� = 𝐵�⃗⃗⃗� in the GGH Scheme. In this case, ℒ(𝐵2) 

is a sublattice of the lattice ℒ(𝐵) since the basis 𝐵2 is derived from 𝐵 and 

contains (𝑛 − 𝑘) basis vectors. The shortest vector in ℒ(𝐵2) also could be larger 

than the shortest vector in ℒ(𝐵), which increases the lattice gap in the 

corresponding SVP instance. As done by Nguyen, the embedding technique 

can be used to reduce the new CVP instance to SVP and later can be solved 

by using lattice reduction methods. The solution will reveal the value of �⃗⃗⃗�2 
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and later can be combined with the known �⃗⃗⃗�1 to form the whole secret 

message �⃗⃗⃗�. 

To solve the challenge for 𝑛 = 400, Lee and Hahn combined their 

technique with Nguyen’s attack. In line with the Nguyen’s attack, assume that 

𝑐 + 𝑠 ≡ 𝐵�⃗⃗⃗� (mod 2𝜎) 

is solved and the value of �⃗⃗⃗� (𝑚𝑜𝑑 2𝜎) = �⃗⃗⃗�2𝜎 is known. The known �⃗⃗⃗�2𝜎 

can be represented as �⃗⃗⃗�2𝜎 = (
�⃗⃗⃗�2𝜎,1

�⃗⃗⃗�2𝜎,2
) ∈ ℤ𝑛 and inserted into the equation (5) 

as, 

𝑐 − 𝐵1 �⃗⃗⃗�1 − 𝐵2�⃗⃗⃗�2𝜎,2 = 𝐵2�⃗⃗⃗�2 − 𝐵2�⃗⃗⃗�2𝜎,2 + 𝑒 

𝑐 − 𝐵1�⃗⃗⃗�1 − 𝐵2�⃗⃗⃗�2𝜎,2 = 𝐵2(�⃗⃗⃗�2 − �⃗⃗⃗�2𝜎,2) + 𝑒                              (6) 

Dividing equation (6) by 2𝜎 yields 

𝑐 − 𝐵1�⃗⃗⃗�1 − 𝐵2�⃗⃗⃗�2𝜎,2

2𝜎
=

𝐵2(�⃗⃗⃗�2 − �⃗⃗⃗�2𝜎,2)

2𝜎
+

𝑒 

2𝜎
                           (7) 

The values of �⃗⃗⃗�1 and �⃗⃗⃗�2𝜎 are assumed as known. Therefore, the left-side 

of the equation (7) is known and eventually makes the equation (7) as a new 

CVP instance. 

Lee and Hahn used the partial decrypted ciphertext by Nguyen for the 

𝑛 = 400 GGH challenge as the vector �⃗⃗⃗�1. In that challenge, the message �⃗⃗⃗� ∈

ℤ400 has integer entries 𝑚𝑖 ∈ [−128,127]. Nguyen discovered  �⃗⃗⃗�2𝜎 ∈ ℤ400 

where 2𝜎 = 2(3) = 6 (Nguyen, 1999). The first entry of �⃗⃗⃗�2𝜎 is 5 which 

indicates that 𝑚1 (𝑚𝑜𝑑 6) = 5. From the interval [−128,127], there are 43 

integers can be the first entry 𝑚1 ∈ �⃗⃗⃗� such that 𝑚1 (mod 6) = 5.  By trying all 

the possible 43 candidates and applying the Lee-Hahn’s attack, the challenge 

for 𝑛 = 400 has been successfully solved. 

It seems the right time to officially declare the GGH Scheme as a dead 

scheme. However, the general idea behind the scheme is still viable and worth 
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to study for further improvement since the one-way function of the scheme is 

still merits due to its simplicity and practicality. On top of that, the scheme 

also considered as the only lattice-based cryptographic scheme that works 

explicitly with lattices compared to the other lattice-based schemes. Therefore, 

the remedy to heal the scheme is still worthy to be explored for keeping the 

scheme alive and survive. The hope is still there. 

 

5    NEW HOPES FOR THE GGH SCHEME 

 
A new hope emerges in 2012, when Yoshino and Kunihiro presented a new 

design of the GGH Scheme with large error vector (referred to as the GGH-

YK Scheme). The security of the scheme is based on a variant of lattice 

problem which defined as follow (Yoshino and Kunihiro, 2012). 

Definition 5.1. For given lattice basis 𝐵, a vector 𝑐, set of integers 𝐼1 and 𝐼2, 

and an integer 𝑘, find an error 𝑒 with entries classified as 

𝑒𝑖 ∈ 𝐼1 for 𝑖 = 1,… , 𝑘 

𝑒𝑖 ∈ 𝐼2 for 𝑖 = 𝑘 + 1,… , 𝑛 

where 𝑒 = 𝑐 − �⃗� with some lattice vector �⃗�. 

This indicates that the entries of the error 𝑒 are no longer selected from 

the small set {−𝜎, 𝜎} where 𝜎 is the perturbation parameter. From the given 

ciphertext 𝑐 and lattice vector �⃗�, the task of this problem is to find the whole 

entries of the error 𝑒. To guarantee that the decryption succeeds, the GGH 

Scheme uses the property of a rounding vector �⃗⃗⃗� = ⌊𝑅−1𝑒⌉ = 0⃗⃗ which implies 

that all elements of 𝑒 are short. In the GGH-YK Scheme, the rounding vector 

�⃗⃗⃗� = ⌊𝑅−1𝑒⌉ ≠ 0⃗⃗. The entries of �⃗⃗⃗� are classified as follows 

𝑤𝑖 = {
0 for at least (𝑛 − 𝑘 ) values of 𝑖,
1 or − 1 for at most 𝑘 values of 𝑖 

 

for 𝑖 = 1,… , 𝑛 and 𝑘 ∈ ℤ<𝑛
+ . If ‖�⃗⃗⃗�‖ > 0 holds, the new error 𝑒 is thus 

expected to be larger than the original error 𝑒 in GGH Scheme. 
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Algorithm 2. The GGH-YK Scheme (Yoshino and Kunihiro, 2012). 

Parameter Setup by Alice 

Sets the value of the following parameters, 

i) Lattice dimension 𝑛. 

ii) Private key parameters 𝛾 ∈ ℤ and 𝛾 > 𝑛. 

iii) Public parameters (𝜎, ℎ, 𝑘), with ℎ > 𝜎 and 𝜎 is an even number. The 

selected parameters must satisfy the following conditions: 

Condition 1:
𝜎

𝛾
+

2𝑘ℎ

𝛾2 +
2𝑛𝜎

𝛾2 <
1

2
 

Condition 2:
ℎ−𝜎

𝛾
+

2ℎ

𝛾2 < 1 

Condition 3:2𝑘 + 2ℎ < 𝛾 

Key Generation by Alice 

i) Generates an 𝑛-by-𝑛 perturbation matrix 𝑃 with entries 𝑝𝑖,𝑗 ∈
{−1,0,1}. 

ii) Computes a private basis 𝑅 as 𝑅 = 𝛾𝐼 + 𝑃 where 𝐼 is an 𝑛-by-𝑛 

identity matrix. 

iii) Computes 𝑄 = 𝑅−1 with entries must satisfy the following 

conditions, 

Condition 4:  For diagonal entries where 𝑖 = 𝑗,|𝑞𝑖,𝑗| ≤
1

𝛾
. 

Condition 5:  For non-diagonal entries where 𝑖 ≠ 𝑗,|𝑞𝑖,𝑗| ≤
2

𝛾2. 

iv) Generate a public basis 𝐵 as 𝐵 = 𝐻𝑁𝐹(𝑅)  such that ℒ(𝑅) = 𝐿 =
ℒ(𝐵). 

v) Sends the public basis 𝐵 with the public parameters {𝑛, 𝜎} to Bob. 

vi) Keeps the other parameters with the private basis 𝑅 secretly. 

Encryption by Bob 

i) Sets the message as a binary set {0,1}𝑙 where 𝑙 ≤ 𝑛. 

ii) Randomly chooses two secret sets 𝑆, 𝑇 ⊂ {1, … , 𝑛}  such that |𝑆| =

𝑘, |𝑇| = 𝑛 − 𝑙 and 𝑆 ∩ 𝑇 = ∅. 

iii) The bits of the message {0,1}𝑙, are encoded into the non-zero entries 

of 𝑒 with entries generated according to the following rules: 

a. if 𝑖 ∈ 𝑆, then 𝑒𝑖 = ±ℎ 

b. if 𝑖 ∈ {1, … , 𝑛}\(𝑆 ∪ 𝑇), then 𝑒𝑖 ∈ {−𝜎,… ,−1} ∪ {1, … , 𝜎} 

c. if 𝑖 ∈ 𝑇, then 𝑒𝑖 = 0 

iv) Computes the ciphertext 𝑐 ∈ ℤ𝑛 as 𝑐 = 𝐵�⃗� + 𝑒 where �⃗� = −⌊𝐵−1𝑒⌋. 

v) Sends the ciphertext 𝑐 to Alice. 

Decryption by Alice 
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i) Computes �⃗⃗� = 𝑅−1𝑐 − ⌊𝑅−1𝑐⌉ 

ii) Computes 𝑒′ = 𝑅�⃗⃗� 

iii) Determine the entries of the rounding vector �⃗⃗⃗� = ⌊𝑅−1𝑒⌉ as follows: 

a. If 𝑒𝑖
′ < −ℎ − 𝑘, set 𝑤𝑖 = 1, 

b. If 𝑒𝑖
′ > ℎ + 𝑘, set 𝑤𝑖 = −1, 

c. Otherwise, set 𝑤𝑖 = 0. 

iv) Compute the error 𝑒 as 𝑒 = 𝑒′ + 𝑅�⃗⃗⃗� and decode the message bits. 

From efficiency perspective, the decryption is very efficient since it is 

done without using the Babai’s round off method. Moreover, the process is 

deterministic without any decryption error compared to GGH Scheme where 

the decryption is still done in probabilistic way. From security perspective, the 

scheme is claimed as resistant to lattice reduction attacks. The used underlying 

lattice-problem instance is conjectured as harder to solve. 

After implementing the GGH-YK Scheme, Barros and Schechter in 2014 

realized that the generation of realistic parameters in the GGH-YK Scheme is 

almost impossible. On top of that, they also noticed that the scheme is still 

behave in the same way as the GGH Scheme since the rounding vector �⃗⃗⃗� is 

always a null vector, 0⃗⃗. Inspired by these issues, they proposed an 

improvement on the GGH-YK Scheme, we refer as GGH-YK-M Scheme. 

Algorithm 3. The GGH-YK-M Scheme (de Barros and Schechter, 2014). 

Parameter Setup by Alice 

Sets the value of the following parameters, 

i) Lattice dimension 𝑛. 

ii) Private key parameter 𝛾 ∈ ℤ and  𝛾 > 𝜌𝑃 where  
𝜌𝑃 = max{|𝜆𝑖| ∶  𝜆𝑖  is an eigenvalue of 𝑃} 

is the spectral radius of the perturbation matrix 𝑃. 

iii) Public parameters (𝜎, ℎ, 𝑘), with ℎ > 𝜎 and 𝜎 is an even number. The 

selected parameters must satisfy the following conditions,  

Condition 1: 
2𝜎

𝛾
+

2𝑘ℎ

𝛾2 +
2𝑛𝜎

𝛾2 <
1

2
+

2𝜎(𝑘+1)

𝛾2  

Condition 2: 2(ℎ − 𝜎) (
1

𝛾
−

1

𝛾2) < 1 

Condition 3: 
ℎ

𝛾
>

1

2
 

Condition 4: ℎ + 𝑘 < 𝛾 

Key Generation by Alice 
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i) Generates an 𝑛-by-𝑛 perturbation matrix 𝑃 with entries 𝑝𝑖,𝑗 ∈ {−1,0} 

ii) Computes 𝑅 = 𝛾𝐼 + 𝑃 where 𝐼 is an 𝑛-by-𝑛 identity matrix. 

iii) Computes 𝑄 = 𝑅−1 with entries must satisfy the following 

conditions, 

Condition 5:  For diagonal entries where 𝑖 = 𝑗, 
1

𝛾
< |𝑞𝑖,𝑗| ≤

2

𝛾
 

Condition 6:  For non-diagonal entries where 𝑖 ≠ 𝑗, 

|𝑞𝑖,𝑗| ≤
2

𝛾2
 

iv) Generate a public basis 𝐵 as 𝐵 = 𝐻𝑁𝐹(𝑅)  such that, 
ℒ(𝑅) = 𝐿 = ℒ(𝐵) 

v) Sends the public basis 𝐵 with the public parameters {𝑛, 𝜎} to Bob. 

vi) Keeps the other parameters with the private basis 𝑅 secretly. 

Encryption by Bob 

i) Set the message as a binary set {0,1}𝑙 where 𝑙 ≤ 𝑛. 

ii) Randomly choose a secret set 𝑆 ⊂ {1, … , 𝑛}. 

iii) The bits of the message {0,1}𝑙, are encoded into the non-zero entries 

of 𝑒 with entries generated according to the following rules: 

a. The “0” bits are encoded as entries randomly chosen from the 

integer set {1, … ,
𝜎

2
} 

b. The “1” bits are encoded as entries randomly chosen from the 

integer set {
𝜎

2
+ 1,… , 𝜎}. 

iv) Computes the ciphertext 𝑐 ∈ ℤ𝑛 as 𝑐 = 𝐵�⃗� + 𝑒 where �⃗� = −⌊𝐵−1𝑒⌋. 

v) Sends the ciphertext 𝑐 to Alice. 

Decryption by Alice 

i) Computes �⃗⃗� = 𝑅−1𝑐 − ⌊𝑅−1𝑐⌉ 

ii) Computes 𝑒′ = 𝑅�⃗⃗� 

iii) Determine the entries of the rounding vector �⃗⃗⃗� = ⌊𝑅−1𝑒⌉ as follows: 

a. If 𝑒𝑖
′ < 0, set 𝑤𝑖 = 1, 

b. Otherwise, set 𝑤𝑖 = 0. 

iv) Compute the error 𝑒 as 𝑒 = 𝑒′ + 𝑅�⃗⃗⃗� and decode the message bits. 

The letter M in the name of GGH-YK-M Scheme is come from the M-

matrix that being used as the private key 𝑅. The inverse of this M-matrix has 

only positive entries which is expected to be advantageous in the efficiency of 

decryption process. The major improvement proposed by Barros and 
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Schechter was on the parameter generation processes where some conditions 

have been changed, maintained and there are new conditions have been 

introduced. The security of the GGH-YK-M Scheme has been assessed by 

launching lattice reduction attacks using LLL and BKZ algorithms. 

Experimentally, these attacks failed for lattice dimension more than 300. 

6    DISCUSSIONS 

 

The effectiveness of the Nguyen and Lee-Hahn attacks are based on the same 

concept, which is simplifying the underlying CVP instance to easier instance 

then use the embedding technique to reduce the simplified instance to SVP. 

With large lattice gaps, lattice reduction methods can efficiently solve the SVP 

and eventually solve the easier CVP instance. If the underlying CVP instance 

can be prevented from being simplified, then both attacks may be bypassed. 

In this section, we evaluate the GGH-YK-M Scheme whether it is secure 

against the Nguyen and Lee-Hahn attacks or not. From the encryption formula, 

we have 𝑐 = 𝐵�⃗� + 𝑒. In this scheme, the message bits are encoded in the vector 

𝑒. Thus, the scheme can be considered broken if we can reveal the vectors 𝑒 or 

�⃗� where �⃗� = −⌊𝐵−1𝑒⌋. In Nguyen’s attack, the vector 𝑒 can be eliminated by 

using modulo reduction on the encryption formula. We try do the same task 

on the GGH-YK-M Scheme. By setting a vector 𝑠 ∈ {𝜎}𝑛, the following 

congruence 

𝑒 + 𝑠 ≡ 0⃗⃗(mod 2𝜎)                                                      (8) 

does not hold since the vector 𝑒 now no longer uniformly selected from the set 

{±𝜎}. The entries of 𝑒 now generated from the integer set {1, … , 𝜎} where the 

parameter 𝜎 is an even number. For large dimension, it is computationally 

inefficient to try all possible entries of the vector 𝑒 exhaustively, but it is still 

possible. Thus, we assume that the congruence (8) holds, then we have 

𝑐 + 𝑠 ≡ 𝐵�⃗� (mod 2𝜎)                                                  (9) 

where �⃗� is the unknown vector. Solving this congruence yields the vector �⃗�2𝜎 

and be inserted into the encryption formula as follows 
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𝑐 − 𝐵�⃗�2𝜎 = 𝐵�⃗� − 𝐵�⃗�2𝜎 + 𝑒 

𝑐 − 𝐵�⃗�2𝜎 = 𝐵(�⃗� − �⃗�2𝜎) + 𝑒                                          (10) 

 

Since �⃗� ≡ �⃗�2𝜎  (mod 2𝜎), then we have 

�⃗� − �⃗�2𝜎 = 2𝜎�⃗�′ ∈ ℤ𝑛                                              (11) 

By inserting equation (11) into equation (10), we have 

𝑐 − 𝐵�⃗�2𝜎 = 2𝜎𝐵�⃗�′ + 𝑒 

𝑐 − 𝐵�⃗�2𝜎

2𝜎
  = 𝐵�⃗�′ +

𝑒

2𝜎
                                              (12) 

All values in the left side of the equation (12), are known. Therefore, the 

equation (12) is a new CVP instance where the left side of the equation is a 

known non-lattice vector, 𝐵�⃗�′ is an unknown lattice vector, and the right-most 

of the equation is a new error vector. But then, the question now is back to the 

entries of the vector 𝑒 which are now generated from the integer set {1,… , 𝜎}, 

and no longer uniformly selected from the small set {±𝜎}. Clearly, the GGH-

YK-M Scheme has successfully eliminated the particular form of the vector 𝑒 

which was previously exploited by Nguyen to simplify the underlying CVP 

instance. At this point, we consider that the Nguyen’s attack has been bypassed 

by the GGH-YK-M Scheme. 

For the Lee-Hahn attack, assume that the first 𝑘 entries of the vector �⃗� 

are known. The vector �⃗� now represented as 

�⃗� = (
�⃗�1

�⃗�2
) ∈ ℤ𝑛 

where �⃗�1 represents the known first 𝑘 entries and �⃗�2 represents the 

remaining unknown entries. Similarly, the public basis 𝐵 also has a new 

representation, 

𝐵 = (𝐵1    𝐵2) 

where �⃗⃗�𝑖 ∈ 𝐵1 for 𝑖 = 1,… , 𝑘 and �⃗⃗�𝑖 ∈ 𝐵2 for 𝑖 = 𝑘 + 1,… , 𝑛. From the 

encryption formula, we have 

𝑐 = 𝐵�⃗� + 𝑒 
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𝑐 = (𝐵1    𝐵2) (
�⃗�1

�⃗�2
) + 𝑒 

𝑐 = 𝐵1�⃗�1 + 𝐵2�⃗�2 + 𝑒 

𝑐 − 𝐵1�⃗�1 = 𝐵2�⃗�2 + 𝑒                                                 (13) 

Since the message �⃗�1 is assumed as known, then the left side of the 

equation (13) is known. Therefore, the equation (13) is a new CVP instance 

with the same vector 𝑒 but with different lattice vector 𝐵2�⃗�2 which is 

obviously smaller than the lattice vector 𝐵�⃗� in the encryption formula. Note 

that, the Lee-Hahn attack succeed since Nguyen previously solved the Internet 

GGH Challenge for dimension 𝑛 = 400. They used the partial solution to run 

their attack to fully solve the challenge for dimension 𝑛 = 400. Without the 

partial solution provided by Nguyen, their attack could fail. The same case 

with the GGH-YK-M Scheme as well. If the partial information cannot be 

gained from the vector �⃗�, the attack also fails to proceed. To reveal the vector 

�⃗� is equivalent as revealing the vector 𝑒 since �⃗� = −⌊𝐵−1𝑒⌋. Therefore, we 

conclude that the GGH-YK-M Scheme also bypassed the Lee-Hahn’s attack. 

 

7    CONCLUSION AND FUTURE WORKS 

 

Is the GGH-YK-M Scheme can be considered as the secure version of the 

GGH Scheme? The accurate answer is remains unknown until a thorough 

analysis on the security of the scheme being carried out which is not the aim 

of this paper. We put this as task as one of our future works. From literature, 

the scheme is remains untouched by any notable attack like Nguyen and Lee-

Hahn attacks. We consider that the GGH Scheme as survive since the current 

variant of the scheme, which are the GGH-YK and GGH-YK-M schemes can 

bypass the Nguyen and Lee-Hahn attacks. However, there are some important 

issues surrounding the scheme. The public and private bases are still in 

matrices form. For large lattice dimension, their sizes still give significant 

effect to the efficiency and practicality the scheme. 

In addition, the public basis 𝐵 is in Hermite Normal Form (HNF) as 

deployed by Micciancio in his GGH-Micciancio Scheme (Micciancio, 2001). 



Survival of the First Practical Lattice-based Encryption Scheme: A Review 

 

 
 

International Journal of Cryptology Research                                                   65 
 

Even though the HNF is easier to store and harder to reduce, it comes with 

additional cost in transforming the private basis 𝑅 into its HNF, especially in 

terms of space complexity. Moreover, the simple formula of the encryption 

process is still exposed to security threats like Nguyen and Lee-Hahn attacks. 

Perhaps, some better formulization is required specially to prevent the CVP 

instance from being simplified. Furthermore, the encoding of the message into 

the vector 𝑒 is done bit-by-bit. For large capacity of data, this process could be 

time consuming. Last but not least, the underlying lattice-problem of the 

GGH-YK-M Scheme also need to be properly formulized and assessed. We 

will address all these issues as our future works to improve the scheme for 

making it better, stronger, and ideal for wide adoption in post quantum era. 
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