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ABSTRACT 

 

This article introduces a novel cryptanalysis technique for the Diffie-

Hellman Key Exchange (DHKE) protocol, created in 2014 by 

Balasubramanian and Muthukumar. The suggested approach is based 

on synchronised chaotic systems with linear control and Fibonacci 𝑄 

matrix as a support matrix. According to their findings, the suggested 

cryptosystem is more secure than the standard ElGamal public key 

cryptosystem due to the difficulty of identifying the private keys 𝑟 and 

𝑠. Simultaneously, the initial value of synchronised chaotic systems is 

unknown as well. While in this article, we demonstrate that the 

suggested method may be broken by demonstrating that the private keys 

𝑟 and 𝑠 can be effectively solved in practice even when the initial value 

of the synchronised chaotic systems is unknown. 

 

Keywords: Chaotic Maps, Chaos Synchronization, Fibonacci 𝑄 

matrix, Linear Control, Public-key Cryptosystem 
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1    INTRODUCTION 

 
In 1976, Diffie and Hellman coined the term "public-key cryptography." They 

demonstrated how to construct a public-key cryptosystem using a one-way 

trapdoor function (PKC). Later the same year, in 1985, Taher ElGamal created 

the ElGamal public-key cryptosystem. ElGamal is a "minor" addition to 

Diffie-Hellman Key Exchange (DHKE) that enables the direct transmission of 

encrypted communications (Zazali & Mior, 2012). However, the encrypted 

message is frequently utilised as an additional key in symmetric encryption, 

typically employed for vast data. Due to its underlying component based on 

the Discrete Logarithmic Problem, ElGamal has been one of the most popular 

cryptosystems (Mandangan et al., 2020). ElGamal's cryptosystem comprises 

three distinct processes: key generation, encryption, and decryption, which are 

discussed in depth below. 

Algorithm 1. The ElGamal Cryptosystem (ElGamal,1985). 

Key Generation: 

1. Choose a private key 1 ≤ 𝑎 ≤ 𝑝 − 1.  

2. Compute 𝐴 = 𝑔𝑎(mod 𝑝). 

3. Publish the public key 𝐴. 

Encryption: 

1. Choose plaintext 𝑚. 

2. Choose random ephemeral key k.  

3. Use Along’s public key A compute: 

i. 𝑐1 = 𝑔𝑘(mod 𝑝).  

ii. 𝑐2 = 𝑚𝐴(mod 𝑝). 

4. Send ciphertext (𝑐1, 𝑐2) to Along. 

Decryption: 

1. Compute (𝑐1
𝑎)−1𝑐2(mod 𝑝) = 𝑚.  

Numerous academics have studied various versions of ElGamal's original 

encryption technique when it comes to ElGamal-type public key 

cryptosystem. For instance, Ismail & Hasan (2006) present a new digital 

signature that eliminates the use of one-time secret key. This property will 

make all attacks, aiming at revealing the one-time secret key irrelevant. Zazali 
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& Mior (2012) introduced key exchange procedure using elliptic curve 

cryptography that analogous to ElGamal's encryption. Asbullah & Ariffin 

(2012) proposes a variant of the ElGamal which implement the intractability 

of the Gap Hashed Diffie-Hellman assumption and present a practical way to 

encrypt short messages. Sarbini et al. (2019) identified many features of Lucas 

sequence variations that are connected from a cryptosystem called the 

LUCELG by combining Lucas sequences onto the Diffie-Hellman and 

ElGamal cryptosystems to enhance efficiency. 

On the other hand, Sarbini et al. (2019) illustrate that the security response 

of the Lucas-Based ElGamal Cryptosystem in the Elliptic Curve group over a 

finite field against the Greatest Common Divisor (GCD) attack. Using great 

common divisor and Dickson polynomials, the Lucas-based El-Gamal 

Cryptosystem in the Elliptic Curve group over the finite field was 

mathematically exposed to the GCD attack. Thus, the study showed that when 

two plaintexts deviate slightly in the group Elliptic curve over the finite field 

from a fixed number, this is extremely risky since the cryptanalyst may obtain 

the plaintext rapidly without decryption. 

Chaos synchronisation has generated enormous attention globally in 

communication systems since it may be used to encrypt or decode data for 

secure conversations (Al-Saidi et al., 2020). Balasubramaniam and 

Muthukumar (2014) discussed synchronising chaotic systems using linear and 

nonlinear feedback control techniques. The primary goal is to adapt the 

synchronised chaotic systems' lowest synchronisation error in protected 

communication. Additionally, the authors studied synchronisation utilising 

linear and nonlinear control approaches and traditional security analysis. 

While chaotic systems are deterministic, in the sense that their initial condition 

determines their whole future course, it is difficult to anticipate their long-term 

behaviour (Natiq et al., 2021). 

According to Balasubramaniam and Muthukumar (2014), the linear 

feedback control approach successfully synchronises chaotic systems 

depending on the cost and inaccuracy of synchronisation. As a result, the 

ElGamal cryptosystem uses the linear feedback control approach for 

synchronising chaotic systems to increase its security level. The Diffie-

Hellman key exchange protocol is introduced via Diffie-Hellman key 

exchange using Fibonacci Q matrices. It is based on synchronised chaotic 
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systems and the ElGamal public-key cryptosystem. Their work modifies the 

Diffie-Hellman key exchange protocol in general and asserts that their 

suggested work is superior to the standard Diffie-Hellman key exchange 

protocol. The cryptosystem proposed in Balasubramaniam and Muthukumar 

(2014) shall be referred to as the BM-ElGamal cryptosystem from here on. 

We demonstrate step-by-step how to break the BM-ElGamal using just the 

public key in this article. We will create a lookup table for the public keys that 

correlate to the private keys. Due to the parameters used in their works, the 

building of the lookup table is easy and practicable. Finally, the BM-ElGamal 

cryptosystem is utterly breakable. 

The following is an overview of how the remainder of the paper. The 

section Materials and Methods outlines the BM-ElGamal cryptosystem. The 

Results and Discussion section demonstrates how to solve the discrete 

logarithm issue using the lookup table, thus breaking the considered 

cryptosystem. In the final part, we give a brief conclusion. 

2    BACKGROUNDS 

 

This section addresses Balasubramaniam and Muthukumar (2014) proposed 

work on the synchronisation of integer-order chaotic systems applied to the 

ElGamal cryptosystem and the Fibonacci 𝑄 matrix. Rather than going into 

depth about the concept and execution of chaotic synchronisation, we will 

concentrate on their cryptography efforts. 

Definition 2.1. Let the Fibonacci sequences as 0, 1, 1, 2, 3, 5, 8, 13, 21 and 

so. Then we define 𝐹0 = 0, 𝐹1 = 1, 𝐹2 = 1, 𝐹3 = 2 and so on. 

Definition 2.2 Let the Fibonacci 𝑄 matrix defined by (Silvester, 1979) as 𝑄 =

(
1 1
1 0

). Then for any integer 𝑛 ≥ 1, the 𝑛-th power of 𝑄 matrix has the form 

𝑄𝑛 = (
𝐹𝑛+1 𝐹𝑛

𝐹𝑛 𝐹𝑛−1
). 

Example 2.1. Let 𝑛 = 2. By referring to Definition 1 and Definition 2, we 

can compute the Fibonacci 𝑄 matrix, 𝑄2 as  
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𝑄2 = (
𝐹𝑛+1 𝐹𝑛

𝐹𝑛 𝐹𝑛−1
) = (

𝐹3 𝐹2

𝐹2 𝐹1
) = (

2 1
1 1

). 

 

3    THE DIFFIE–HELLMAN KEY EXCHANGE 

PROBLEM BASED ON SYNCHRONIZED CHAOTIC 

SYSTEMS 

 

As with the Diffie–Hellman key agreement, two parties, Alice, and Bob, 

seek to collaborate to generate a shared key. This shared key may then be used 

to encrypt and decrypt messages between the two parties using any symmetric 

cryptosystem. Let 𝑄 = (
1 1
1 0

) be an initial Fibonacci 𝑄 matrix and 𝑛 = 38 

referring to the number of characters as in Table 1 below. 

 

Table 1. Assignment of numbers with characters. 

Index 0 1 2 3 4 5 6 7 8 9 10 11 12 13 ⋯ 37 

Character 0 1 2 3 4 5 6 7 8 9 - . A B ⋯ Z 

 

By referring to Algorithm 2, the Diffie-Hellman Key Exchange based on 

Chaos Synchronization is demonstrated step-by-step until both Alice and Bob 

have a shared secret key. 

Algorithm 2. Diffie-Hellman Key Exchange based on Chaos 

Synchronization 

Alice  Bob 

Alice and Bob agree on a public element 𝑄 and 𝑛 = 38 referring to the 

number of characters as in Table 1 above. 

1. Chooses a secret number 

𝑡𝐴𝑙𝑖𝑐𝑒 > 𝑡0. 

2. Compute 𝑥 at 𝑡𝐴𝑙𝑖𝑐𝑒 using the 

concept of chaos 

synchronization. 

 1. Chooses a secret number 

𝑡𝐵𝑜𝑏 > 𝑡0. 

2. Compute 𝑥 at 𝑡𝐵𝑜𝑏 using the 

concept of chaos 

synchronization. 
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3. Compute a secret key 𝑠 ≡

[𝑡𝐴𝑙𝑖𝑐𝑒 ∙ |𝑥|] (mod 𝑛) 

4. Compute a public key as 𝐴 ≡

𝑄𝑠 (mod 𝑛) 

3. Compute a secret key 𝑟 ≡

[𝑡𝐵𝑜𝑏 ∙ |𝑥|] (mod 𝑛). 

4. Compute a public key as 𝐵 ≡

𝑄𝑟 (mod 𝑛) 

Key Exchange Procedure: 

Alice sends her public key 𝐴 to Bob. Similarly, Bob sends his public key 

𝐵 to Alice. 

5. Compute a shared key as 𝐾 ≡

𝐵𝑠 (mod 𝑛). 

 5. Compute a shared key as 𝐾 ≡

𝐴𝑟 (mod 𝑛). 

Now, Alice and Bob have a shared key for encryption and decryption 

procedures. 

𝐵𝑠 ≡ 𝐾 ≡ 𝐴𝑟 (mod 𝑛). 

(𝑄𝑟)𝑠 ≡ 𝐾 ≡ (𝑄𝑠)𝑟  (mod 𝑛). 

𝑄𝑠𝑟 ≡ 𝐾 ≡ 𝑄𝑟𝑠 (mod 𝑛). 

 

Algorithm 3 below shows a step-by-step for the Diffie-Hellman Key 

Exchange and ElGamal Cryptosystem based on Chaos Synchronization. 

Algorithm 3. Diffie-Hellman Key Exchange and ElGamal Cryptosystem 

based on Chaos Synchronization 

Public Parameters 

A trusted third party publish a public element 𝑄 and 𝑛 = 38 referring to 

the number of characters as in Table 1 above. 

Key Creation as Algorithm 1 

1. Chooses a secret number 

𝑡𝐴𝑙𝑖𝑐𝑒 > 𝑡0. 

2. Compute 𝑥 at 𝑡𝐴𝑙𝑖𝑐𝑒 using the 

concept of chaos 

synchronization. 

3. Compute a secret key 𝑠 ≡

[𝑡𝐴𝑙𝑖𝑐𝑒 ∙ |𝑥|] (mod 𝑛). 

4. Compute a public key as 𝐴 ≡

𝑄𝑠 (mod 𝑛). 

 

Alice sends the public key 𝒑𝒌: (𝑸, 𝒏, 𝑨) to Bob. 

Encryption 

 5. Chooses a secret number 

𝑡𝐵𝑜𝑏 > 𝑡0. 

6. Compute 𝑥 at 𝑡𝐵𝑜𝑏 using the 
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concept of chaos 

synchronization. 

7. Compute a secret key 𝑟 ≡

[𝑡𝐵𝑜𝑏 ∙ |𝑥|] (mod 𝑛). 

8. Compute the ciphertext 

(𝑐1, 𝑐2) = 𝐸𝑝𝑘(𝑚) of the 

plaintext 𝑚 ∈ 𝑚2×2(ℝ) where 

𝑐1 = 𝐵 ≡ 𝑄𝑟 (mod 𝑛) and 

𝑐2 = 𝐸 ≡ 𝑚 ∙ 𝐴𝑟 (mod 𝑛). 

Bob sends the ciphertext (𝑐1, 𝑐2) to Alice. 

Decryption 

9. Compute 𝐾 ≡ 𝑐1
𝑠 ≡

(𝑄𝑟)𝑠 (mod 𝑛) 

10. Compute the plaintext 𝑚′ ≡

𝐷𝑠𝑘(𝑐2) ≡
𝑐2

𝐾
≡

𝑚𝐴𝑟

𝑄𝑟𝑠  ≡
𝑚𝑄𝑟𝑠

𝑄𝑟𝑠  ≡

𝑚 (mod 𝑛) where 𝑚′ = 𝑚. 

 

 

 

4    RESULT AND DISCUSSIONS 

 

The BM-ElGamal cryptosystem is simply a Diffie–Hellman key agreement 

scheme with a modulus of 𝑛 = 38 characters instead of a big prime integer. 

As opposed to the general Diffie–Hellman algorithm, the suggested Diffie–

Hellman algorithm is designed to loosen the constraint of using integers to 

make it valid for any numbers. Meanwhile, the technique is deemed unsafe 

when effectively creating a lookup table for the public key that corresponds to 

the private key owing to the tiny modulus. If an eavesdropper observes A and 

B, he or she can solve the discrete logarithm problem 𝑄𝑟 (mod 38)  to 

determine 𝑟 or 𝑄𝑠 (mod 38) to determine 𝑠 using the created lookup table and 

then compute the shared key 𝑄𝑟𝑠 (mod 38). 

This section demonstrates how to solve the discrete logarithm issue using 

the technique given in Balasubramaniam and Muthukumar (2014). Let the 

initial Fibonacci 𝑄 matrix, and modulus 𝑛 are public. The attacker can then 

build Fibonacci sequences and a lookup table for each set of public keys 
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included in ℤ𝑛. Remark that creating a lookup table for the Fibonacci 𝑄 matrix 

for a small modulus 𝑛 is a simple polynomial-time operation (i.e., swift). We 

will now walk through the process of creating such a lookup table step by step. 

Step 1: Given 𝑛 = 38, the total number of characters used as in BM-ElGamal 

cryptosystem. An attacker can generate a list of first 39 Fibonacci numbers as 

in Table 2 below. 

Table 2. Fibonacci sequences for 𝑛 =  38. 

Index 0 1 2 3 4 5 6 7 ⋯ 37 38 

Fibonacci 

Number 
0 1 1 2 3 5 8 13 ⋯ 24157817 39088169 

 

From the partial information, he can simplify the underlying CVP 

instance to an easier instance with smaller error vector. By setting a vector 𝑠 ∈

{𝜎}𝑛, the congruence 𝑒 + 𝑠 ≡ 0⃗⃗(mod 2𝜎) holds. From the encryption 

formula, we have 𝑐 = 𝐵�⃗⃗⃗� + 𝑒. Then, 

Step 2: Given 𝑄 = (
1 1
1 0

) and 𝑛 = 38. Based on Table 2, an attacker can 

generate a list of Fibonacci 𝑄 Matrix as in Table 3. Observe that, for the same 

public key value, 𝐴 and 𝐵 would have more than one private key value 

representing 𝑠 and 𝑟 that produces a shared key used by Alice and Bob. Green 

and Orange colour: representing Alice’s and Bob’s public key and private 

key, respectively. 

 Table 3. The corresponding public keys 𝐴 and 𝐵 to the private keys 

𝑠 and 𝑟. 

𝑟 or 𝑠 𝐴 or 𝐵 𝑟 or 𝑠 𝐴 or 𝐵 𝑟 or 𝑠 𝐴 or 𝐵 

0 (
1 1
1 0

) 13 (
35 5
5 30

) 26 (
34 21
21 13

) 

1 (
1 1
1 0

) 14 (
2 35

35 5
) 27 (

17 34
34 21

) 

2 (
2 1
1 1

) 15 (
37 2
2 35

) 28 (
13 17
17 34

) 

3 (
3 2
2 1

) 16 (
1 37

37 2
) 29 (

30 13
13 17

) 

4 (
5 3
3 2

) 17 (
0 1
1 37

) 30 (
5 30

30 13
) 
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5 (
8 5
5 3

) 18 (
1 0
0 1

) 31 (
35 5
5 30

) 

6 (
13 8
8 5

) 19 (
1 1
1 0

) 32 (
2 35

35 5
) 

7 (
21 13
13 8

) 20 (
2 1
1 1

) 33 (
37 2
2 35

) 

8 (
34 21
21 13

) 21 (
3 2
2 1

) 34 (
1 37

37 2
) 

9 (
17 34
34 21

) 22 (
5 3
3 2

) 35 (
0 1
1 37

) 

10 (
13 17
17 34

) 23 (
8 5
5 3

) 36 (
1 0
0 1

) 

11 (
30 13
13 17

) 24 (
13 8
8 5

) 37 (
1 1
1 0

) 

12 (
5 30

30 13
) 25 (

21 13
13 8

)   

 

Step 3: Given a public key Alice, 𝐴 and a public key Bob, 𝐵. An attacker can 

determine the correspondent private keys 𝑟 and 𝑠 easily due to a small number 

as a modulus. 

Step 4: Finally, an attacker can generate a shared key used by Alice and Bob. 

By referring to Table 3, more than one of the values of the private keys 𝑟 

and 𝑠 for the duplicate public keys 𝐴 and 𝐵 will produce a correct shared key 

used by Alice and Bob. This scenario happens when the order of 𝑄 (mod 𝑛) 

is small due to utilizing a small and composite number as a modulus. It is 

feasible to generate a list of Fibonacci 𝑄 matrix as in Table 3 for case modulus 

𝑛 = 256, which is the total number of ASCII characters. Additionally, there 

are many valid values for the private keys 𝑟 and 𝑠 for the duplicate public keys 

𝐴 and 𝐵 where the modulus 𝑛 = 38 is not a prime number. A modulus of a 

prime integer can be used to solve this problem. For instance, 𝑛 = 37 when 

the letter '-' at index 10 in Table 1 is omitted. See the following Table 4. 

 Table 4. The corresponding public keys 𝐴 and 𝐵 to the private keys 

𝑠 and 𝑟 when modulus 𝑛 is a prime number. 

𝑟 or 𝑠 𝐴 or 𝐵 𝑟 or 𝑠 𝐴 or 𝐵 𝑟 or 𝑠 𝐴 or 𝐵 

0 (
1 1
1 0

) 13 (
7 11

11 33
) 26 (

22 33
33 26

) 

1 (
1 1
1 0

) 14 (
18 7
7 11

) 27 (
18 22
22 33

) 



Zahari Mahad, Muhammad Asyraf Asbullah, Muhammad Rezal Kamel Ariffin & Arif Mandangan 
 

 

 
10                                                  International Journal of Cryptology Research 

 

2 (
2 1
1 1

) 15 (
25 18
18 7

) 28 (
3 18

18 22
) 

3 (
3 2
2 1

) 16 (
6 25

25 18
) 29 (

21 3
3 18

) 

4 (
5 3
3 2

) 17 (
31 6
6 25

) 30 (
24 21
21 3

) 

5 (
8 5
5 3

) 18 (
0 31

31 6
) 31 (

8 24
24 21

) 

6 (
13 8
8 5

) 19 (
31 0
0 31

) 32 (
32 8
8 24

) 

7 (
21 13
13 8

) 20 (
31 31
31 0

) 33 (
3 32

32 8
) 

8 (
34 21
21 13

) 21 (
25 31
31 31

) 34 (
35 3
3 32

) 

9 (
18 34
34 21

) 22 (
19 25
25 31

) 35 (
1 35

35 3
) 

10 (
15 18
18 34

) 23 (
7 19

19 25
) 36 (

36 1
1 35

) 

11 (
33 15
15 18

) 24 (
26 7
7 19

)   

12 (
11 33
33 15

) 25 (
33 26
26 7

)   

 

When the modulus n is not a prime integer, the correspondence between 

public and private keys is 1:1, as shown in Table 3. However, the attacker can 

still obtain the private key since a lookup table containing a list of the public 

keys that correspond to the private keys can be generated. 

We have shown our steps to breaking the BM-ElGamal cryptosystem. We 

end this section with a few facts about the excellent and secure criteria of the 

Diffie-Hellman key exchange protocol parameters. When the 𝑄 (mod 𝑛) 

order is significantly large, the Diffie-Hellman key exchange is most secure. 

Typically, the group size is designed to be big enough that the discrete 

logarithm issue posed by the Diffie-Hellman algorithm cannot be solved in a 

reasonable time.  The modulus 𝑛 is nearly always a prime integer and should 

be at least 200 digits in length due to the difficulty of the discrete logarithm 

issue in such a scenario (Wagstaff Jr., 2019). 

 

5    CONCLUSION 
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This paper demonstrates that the Diffie-Hellman key exchange protocol and 

ElGamal public-key cryptosystem namely the BM-ElGamal cryptosystems are 

insecure for the synchronized chaotic system. The study indicates that even if 

the initial value of the synchronized chaotic systems is unknown, the private 

keys 𝑟 and 𝑠 may be quickly acquired by an outsider. Exemplifying with a 

small number (even a small prime number) as a modulus for the Diffie-

Hellman key exchange protocol demonstrates that this is a terrible idea. As a 

result, the cryptosystem, as mentioned earlier, cannot be considered secure in 

its current state. This paper illustrates how critical it is for a company to 

undertake security assessments to secure future technology sustainability and 

improved cybersecurity management. 
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