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ABSTRACT

There are many ways to generate random bit sequences. Each gen-
erator’s quality should be evaluated in the context of cryptography using
various statistical tests. Passing statistical tests is a must since any statis-
tical flaw can be exploited by an attacker to learn more about the output’s
future. We propose a new pseudo random bit generator (PRBG), whose
fundamental component is the AAβ - function. The NIST Statistical
Test Suite, which was regarded as the most rigorous statistical test suites
to detect the precise properties anticipated of truly random sequences,
was used to perform statistical testing on the generated bit sequences.
The results are presented in detail as well.
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1 INTRODUCTION

In many situations such as cryptography, modeiling or simulation application,
it is essential to generate sequences of random numbers or bits for various pur-
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poses. For cryptographic purposes, Random Number Generators (RNG) are
paramount for algorithms and protocols. For instance, they are required in the
generation of unpredictable values to be used in key generation applications
and also in other cryptographic algorithm parameters. As a result, the use of
appropriate random number (bit) generators becomes vital and those gener-
ated sequences must be random in the sense that their behaviour should not
be easily predicted. Even though there is no standard formal definition of it,
randomness refers to the outcome of a probabilistic process that produces inde-
pendent, uniformly distributed and unpredictable values that cannot be reliably
produced (Schneier, 2007). Intuitively, one of the most important properties
of a good random number generator is unpredictability. Since randomness is
related to the unpredictable property, it can be described in probabilistic terms,
and the randomness of a sequence can be studied by means of a hypothesis
test. (Alcover, 2013).

Apparently from a direct observation of an output, a generator is said to
be unpredictable if it is impossible to foresee any information about the fu-
ture progress of a sequence. For example, we can observe a long sequence
of numbers, by looking for some patterns. Then if a pattern is identified, the
possibility to predict the future progress of the sequence is very high. On the
other hand, if no pattern has being identified, we can’t simply conclude that
no pattern is present. Just that we failed in the effort of finding it. A good
interpretation of what is random all about is by observing the result of flipping
a fair coin. A random bit sequence could be interpreted as the result of flipping
an unbiased ’fair’ coin with sides that are labelled ’0’ and ’1’. Each of flip hav-
ing a probability of exactly 1/2 of producing either ’0’ or ’1’. Furthermore,
the flips are independent of each other as the result of any previous coin flip
does not affect future coin flips. All elements of the sequence are generated
independently of each other, and the value of the next element in the sequence
cannot be predicted, regardless of how many elements have already been pro-
duced. The output of such an idealized generator of a true random sequence
serves as a yardstick for the evaluation of random and pseudo- random number
generators.

Nonetheless there are many techniques to generate random bit sequences,
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in the context of cryptography the quality of each generator should be mea-
sured by means of different statistical tests. ”Passing statistical tests is a nec-
essary condition, since any statistical defect can be used by an attacker to gain
information about the future output”, as it is stated in (Koeune, 2005). In this
section, we propose a novel pseudo- random bit generator (PRBG) in which
the AAβ - function is the basic building block. We also present the detailed
result of the statistical testings on the generated bit sequences, done by using
the NIST Statistical Test Suite which was considered the most stringent statis-
tical test suites to detect the specific characteristics expected of truly random
sequences (Patidar and Sud, 2009).

2 THE PROPOSED GENERATOR

2.1 The AAβ- function

Initially, the AAβ- function was employed in generating their public keys and
the keys in the encryption and decryption procedure (Ariffin and Abu, 2009).
Although their public key scheme was later found to be insecure, the recur-
rence function defined was a promising PRNG to be studied. We begin with
the following definitions.

Definition 2.1. : The set of binary strings with a length of k bits is defined by
S∗
k =

{
s = {bi}k−1

i=0 : bi ∈ {0, 1}
}

where k ∈ Z+

Definition 2.2. : Let α, β > 0 and α < β . The function AAβ (xi) is defined
as

AAs
β(xi) = xi+1 =

{
αxi−1 + xi, bi = 0
xi−1 + βxi, bi = 1

(1)

where i = 0, 1, 2, . . . , (k − 1), x−1 = 0, x0 ∈ Z+ and s ∈ S∗
k .

International Journal of Cryptology Research 3



Aniza Abd.Ghani & Muhammad Rezal Kamel Ariffin

2.2 The proposed Pseudo- Random Bit Generator (PRBG)

We explain our proposed generator as follows: Suppose k and l are positive
integers where k + 1 ≤ l ≤ 2k − 1. Let α, β > 0. A seed s0 is an integer or
s0 = {bi}ki=0 , bi ∈ 0, 1 where 1 ≤ s0 ≤ 2k − 1. For 0 ≤ i ≤ l − 1, we define

si+1 =

{
αsi + si−1, bi = 0
si + βsi−1, bi = 1

(2)

and define
f(s0) = (z1, z2, · · · , zi), (3)

where
zi = si (mod 2), 1 ≤ i ≤ l (4)

Then f is a (k, l) - PRBG, called the AAβ pseudo- random bit generator.
The proposed algorithm of the generator is as in Figure 1.
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INPUT: α , β, x[0], n
OUTPUT: Stream of bits

(1) procedure AAβ (α, β, x, y, b)
(2) For i from 2n−1 to 2n − 1 do K ← i
(3) For j from n by −1 to 1 do B[j]← K (mod 2)

End do
(4) Set initial values X ← 0, Y ← 1
(5) For j from 1 to n do procedure in (1) by setting Z ← fn(α, β,X, Y,B[j]) ;

X ← Y ; Y ← Z
End do

(6) Convert Z into binary
(7) Choose the middle bit of the string
(8) End do
(9) Return generated bits.

Figure 1: Algorithm : TheAAβ pseudo random bit generator

3 THE STATISTICAL TESTING

In computer security, suitable metrics are needed to investigate the degree of
randomness for binary sequences produced by cryptographic random number
generators (RNGs). With the intention of gaining the assurance that newly
developed pseudo random bit generators are cryptographically secure, a gen-
erator should be subjected to a variety of statistical tests. The tests were
designed to detect the explicit characteristics expected of truly random se-
quences. Prior to be applied in any cryptographic applications, the statisti-
cal tests were designed to detect the specific characteristics expected of truly
random sequences. Soto in (Soto, 1999) highlighted the four most popular
options: NIST Test Suite (Elaine and Allen, 2011), the DIEHARD suite of sta-
tistical tests (Marsaglia, 1985), The Crypt-XS suite of statistical tests and the
Donald Knuth’s statistical tests set. There are different number of statistical
tests in each of the above- mentioned test suites to detect distinct type of non-
randomness in the binary sequences. Various efforts based on the principal
component analysis show that not all the above- mentioned suites are needed
to implement at a time as there are redundancy in the statistical tests.
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Practically, statistical testing is employed to gather evidence that a gener-
ator indeed produces numbers that appear to be random (Soto, 1999). In other
words, those tests help only to detect certain kinds of weaknesses a tested
generator may have. Even if a sequence passes a finite number of statistical
tests, there is no concrete evidence that the sequence was indeed generated
by a (truly) random number generator (Kocarev and Jakimoski, 2003). For
analysing the randomness of the proposed pseudo- random bit generator, we
use the most stringent tests of randomness: the NIST suite tests. There are
many papers using NIST statistical tests in analysing their PRBG, see (Al-
cover, 2013),(Cristina et al., 2012), (Patidar and Sud, 2009), (Jessa, 2010),
(Ilyas et al., 2013), among others. Referring to (Soto, 1999) and (Pareschi
et al., 2012), one of the advantages of NIST tests suite is the approach used
does not require any assumption on the generator under test, since it only looks
for evidence of particular statistical recurrences in a generated stream.

The NIST Statistical Test Suite is a statistical package based on hypoth-
esis testing provided by The National Institute of Standards and Technology
(NIST), USA. The package was developed, purposely to test the randomness of
arbitrarily long binary sequences produced by pseudo- random bit generators.
These hypothesis-based testing focus on a various type of non-randomness
that could exist in a binary sequence. The NIST statistical package consists
of 15 statistical tests which can be classified into two categories: (i) non-
parameterized tests : Frequency (monobit) test, Runs test, Test for longest
run of ones in a block, Binary matrix rank test, Cumulative sums test, Dis-
crete Fourier transform (spectral) test (ii) parameterized tests: Frequency test
within a block, Approximate entropy test, Linear complexity test, Maurel’s
universal statistical test, Serial test, Overlapping template matching test and
Non-overlapping template matching test. For the detailed description of all
15 tests of NIST suite, we refer the readers to NIST document (Rukhin et al.,
2010).
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3.1 Testing Strategy

A hypothesis test is a formal procedure used in the statistics to accept or re-
ject an assumption. The NIST structure, similar to other statistical tests, is
based on hypothesis testing. The statistical test is formulated to test a specific
null hypothesis denoted as H0. The null hypothesis is determining whether or
not a selected sequence of zeroes and ones is random. On the other hand, the
associate alternative hypothesis denoted by Ha is that the tested sequence is
not random. A decision or conclusion is derived from each particular test, as
whether to accept or reject the null hypothesis, based on the tested sequence
that was produced.

Referring to the NIST document (Rukhin et al., 2010), for each test a rele-
vant randomness statistic must be chosen and used to determine the acceptance
or rejection of the null hypothesis. Under an assumption of randomness, such
a statistic has a distribution of possible values. A theoretical reference distri-
bution of this statistic under the null hypothesis is determined by mathematical
methods and corresponding probability value (P-value) is extracted. The P-
value summarizes the strength of the evidence against the null hypothesis. If a
P-value for a test is determined to be equal to 1, then the sequence appears to
have perfect randomness. On the other hand, if a P-value equal to zero indi-
cates that the sequence appears to be completely non-random.

A significant level (denoted as α ) be chosen for the tests and if P-value
≥ α, then the null hypothesis is accepted that is the sequence appears to be
random. If P < α , then the null hypothesis is rejected that is the sequence
appears to be non-random. Typically, the significant level α is chosen in the
interval [0.001, 0.01]. For example, the α = 0.01 indicates that one would ex-
pect 1 sequence out of 100 sequences to be rejected. A P-value ≥ 0.01 would
mean that the sequence would be considered to be random with a confidence
of 99%. An α of 0.001 indicates that one would expect one sequence in 1000
sequences to be rejected by the test if the sequence was random. For a regard-
ing the quality of the sequence can be made on conclusion P-value ≥ 0.001, a
sequence would be considered to be random with a confidence of 99.9%. For
a P-value < 0.001 would mean that the conclusion was that the sequence is
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non-random with a confidence of 99.9%.

For our numerical implementations on the proposed pseudo- random bit
generator, we have divided our empirical testing into two parts. For the first
part of it, we have generated 5 blocks of sequences. Each block consists of
1000 bit streams (sample size m = 1000 ), each of length 1024 bits , generated
by 5 different parameters and randomly chosen seed, (α, β,x[0] ∈ N ). For
our testing purposes, we refer to (Abu et al., 2009) for using short size of
sequence. Furthermore, as suggested by the NIST, there are only 8 tests which
are particularly suitable for practical cryptographic keys size. The selected
NIST Tests for short keys are listed in table 1 . In addition, for the second part
of the testing, we have generated 5- bit streams, each of length 106, which was
also generated via 5 different parameters and randomly chosen seed.

Item Statistical Test Min Practical bits n
1 Frequency Monobit 128 bits
2 Block Frequency 128 bits
3 Cumulative Sums (Forward and Backward) 128 bits
4 Runs 128 bits
5 Longest Runs of Ones 128 bits
6 Spectral DFT 1024 bits
7 Approximate Entropy 128 bits
8 Serial 128 bits

Table 1: The list of suitable random tests for short keys (Abu et al.,
2009)

3.2 Interpretation of the empirical results

In this section we present the interpretation of our empirical results obtained
from testing the randomness of the proposed generator using the NIST Statisti-
cal Tests. The empirical result can be interpreted in many ways. NIST adopted
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the two approaches as follows: (1) the examination of the passing ratio of se-
quences that pass a statistical test (we denote as PR) and (2) the distribution
of P-values (P-values uniformity) computed by the software itself. For every
test that has been done to each block, final analysis report is generated when
statistical testing is complete.

3.2.1 Empirical Results for the five Blocks

i) Passing ratio of each test

To determine the passing ratio of each test, the significance level for each
test is set to 0.01 meaning that 99% test samples should pass the test. We
considered a significant level of 1%. By estimation theory and resuming 1000
times each test, the range of acceptable proportions for each of the individ-
ual test can be determined by using the confidence interval defined as p̂ ±
3
√

p̂ (1− p̂) /m, where p̂ = 1 − α = 1 − 0.01 = 0.99 and m = 1000. The
acceptance region in our case will be 0.99±3

√
0.99(1− 0.99)/1000, namely

[0.9806, 0.9994].

We summarize the result for 8 tests from the NIST suite for each of the
blocks tested in Table 2 : If the passing ratio belongs to the acceptance region
(0.980561), the decision is SUCCESS or the test is passed. From the table, all
8 tests in the 5 different blocks passes the NIST test.
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ii) P-values uniformity of each test

The second approach adopted by NIST measures the distribution of P-
values in interval [0,1] divided into ten equal-sized sub-intervals. It is generally
suggested the uniformity of P-values for each of the individual test using χ2

test. The χ2 test value is defined in formula 5 where Fi is the number of P-
values in the i-class (the P-values are put into 10 classes between 0 and 1,
thus the degree of freedom in this case for χ2 is 9; m is number of sampels
(here m = 1000). As a result, we have obtained a new P-value (PT ) for each
statistical tests. If PT ≥ 0.0001, then the sequences can be considered to
be uniformly distributed. We refer to (Rukhin et al., 2010) for the details of
computing (PT ).

χ2 =
10∑
i=1

(Fi −m/10)2 / (m/10) (5)

We present the results of the (PT ) for each statistical tests in Table 3. Only
FFT and Approximate Entropy tests are not uniformly distributed in their P-
values .
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Next, we present the result for the bit streams. Each of the stream of length
106 were tested using all 15 statistical tests in the NIST Suite and the P-values
obtained were recorded in the table. in Table 4. The P-values of of each single
stream is required to be larger that α = 0.01 in order to pass the statistical
tests. From the table, it is clearly the tested stream passes all the 15 tests.
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The AAβ Pseudo- Random Bit Generator and Its Statistical Tests

4 CONCLUSION

We have put forth a design of a pseudo random bit generator (PRBG) based on
AAβ function iterated independently from independent initial conditions. We
have tested rigorously the generated sequence using the NIST suite, which are
the most rigorous statistical tests suites to identify the specific characteristics
expected of truly random sequences. The results of the statistical testing are
encouraging and show that the proposed PRBG has some properties and hence
can be suggested in the design of a new stream cipher.
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