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ABSTRACT

The notion of digital signing scheme was introduced in the new era
of public key cryptography. Since then, many signing schemes have
been designed utilizing one-way functions such as discrete logarithm,
integer factorization, elliptic curve and quadratic residue. This paper
will put forward a signing scheme which deploys the discrete logarithm
problem (DLP) and bivariate function hard problem (BFHP).

Keywords: digital signing scheme, discrete logarithm problem, dio-
phantine equations, bivariate function hard problem

1 INTRODUCTION

A digital signing scheme is very important in digital world today. It serves
(a) to authenticate the originality of a digital message or document; (b) to
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check whether the message or document has been altered before; and (c) to
prevent the sender to deny having sent the message or document. Many sign-
ing schemes have been introduced before by ElGamal (1985), Rivest et al.
(1978) and Schnorr (1991). Furthermore, a standard digital signature scheme
has been introduced to be practised by public users (Gallagher, 2013). All
of the schemes mentioned either uses integer factorization problem (IFP) or
discrete logarithm problem (DLP) which many have considered as one-way
functions in the mathematical field. These functions ensure the authenticity,
integrity and non-repudiation stated before.

A digial signing scheme must be efficient in computational complexity
since there are millions of worldwide signing and verification process hap-
pen everyday in the digital realm. The vast number of applications today also
require the scheme to be more flexible especially for small devices. In this pa-
per, we will show how our signing scheme competes with other digital signing
schemes with respect to their major operations such as modular exponentia-
tion.

1.1 Contribution of This Paper

In our paper, we will introduce a scheme which combines discrete logarithm
problem (DLP) and a newly defined one-way function called bivariate func-
tion hard problem (BFHP), introduced by Ariffin et al. (2013). Based on the
abbreviations of both problems, we named this new scheme as DLBF digital
signing scheme. This scheme will have probabilistic key-generation and sign-
ing algorithms which take randomized values as their inputs. Since it is newly
introduced, not many attacks or analysis against DLBF scheme have been dis-
covered. It is upon the readers that we depend the attacks will come from.
Nevertheless, basic security and performance analysis are shown in this paper.

1.2 Outline of the Paper

We provide some mathematical backgrounds used in this paper in Section 2. It
includes brief introduction to DLP and BFHP; two mathematical hard problem
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utilized by the new scheme. Then Section 3 introduces the new scheme in its
full form. In Section 4 and 5, we give brief security and performance analysis
against the scheme, respectively. Finally, we conclude the paper in Section 6.

2 MATHEMATICAL BACKGROUND

In this section, we provide brief introduction to discrete logarithm problem.
Then, the application of linear diophantine equations with infinitely many so-
lutions is also briefed since the notion of the application is crucial to introduc-
ing bivariate function hard problem (BFHP) afterwards. Both DLP and BFHP
are two hard problems employed by the new scheme as its security strength.
Finally, we define the term computational reduction to be used in our security
analysis later in this paper.

2.1 Discrete Logarithm

The definition of discrete logarithm problem is as follows:

Definition 2.1 (Discrete Logarithm Problem). Given h ∈ ZN is an element in
group N and g is the generator of the same group, discrete logarithm problem
is a problem to find x if gx ≡ h modulo N .

Diffie-Hellman Key Exchange (Diffie and Hellman, 1976), the first scheme
that introduced asymmetric key cryptography to the world, specifically uses
discrete logarithm to achieve its security goal. As of today, there is still no
polynomial time i.e effective algorithm has been discovered to solve this prob-
lem. Hence, DLP is still considered hard to be solved. The best algorithm

to solve it, index calculus method, has O
(
e
(1+O(1))

(√
ln(p)ln(ln(p))

))
of time

complexity which is in sub-exponential time (Schirokauer et al., 1996). For
DLP in prime fields, number field sieve method has been proposed to solve it;
also in sub-exponential time (Coppersmith et al., 1986).
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2.2 Linear Diophantine Equations with Infinitely Many Solutions

Definition 2.2. The successful process of prf-solving a Diophantine equation
which has infinitely many solutions is the process of determining a preferred
solution from a set of infinitely many solutions for the Diophantine equation.

To further understand and obtain the intuition of Definition 2.2, we will
now observe a remark by Herrmann and May (2008). It discusses the ability
to retrieve variables from a given linear Diophantine equation. But before that
we will put forward a famous theorem of Minkowski that relates the length of
the shortest vector in a lattice to the determinant:

Theorem 2.1 (Minkowski’s theorem). In a ω-dimensional lattice, l there exists
a non-zero vector v with

|| v || ≤ ω0.5det(l)
1
ω (1)

We now put forward the remark.

Remark 2.1 (Herrmann and May, 2008). There is a method for finding small
roots of linear modular equations a1x1+a2x2+· · ·+anxn ≡ 0 (mod N) with
known modulusN . It is further assumed that gcd(ai, N) = 1. LetXi be upper
bound on |xi|. The approach to solve linear modular equation requires to solve
the shortest vector in a certain lattice. We assume that there is only one linear
independent vector that fulfills Minkowski bound (Theorem 2.1) for the shortest
vector. Herrmann and May (2008) showed that under heuristic assumption
that the shortest vector yields the unique vector (y1, · · · , yn) whenever

n∏
i=1

Xi ≤ N. (2)

If in turn we have
n∏
i=1

xi > N1+ε

Then the linear equation usually has N ε many solutions, which is exponen-
tial in the bit-size of N . So there is no hope to find efficient algorithms that
in general improve on this bound, since one cannot even output all roots in
polynomial time.
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We now put forward a corollary.

Corollary 2.1. A linear Diophantine equation f(x1, x2, · · · , xn) = a1x1 +
a2x2 + · · ·+ anxn = N that satisfies

n∏
i=1

xi > N1+ε

is able to ensure secrecy of the sequence x = {xi}.

Remark 2.2. In fact if one were to try to solve the linear Diophantine equation
N = a1x1 + a2x2 + · · ·+ anxn, where

n∏
i=1

xi > N1+ε

any method will first output a sequence of short vectors (x′1, x
′
2, · · · , x′n)

as the initial condition. Then there will be infinitely many values from this
initial condition that is able to reconstruct N .

2.3 Bivariate Function Hard Problem

Bivariate function hard problem or BFHP is a particular case of a linear Dio-
phantine equations in two variables. It is first introduced by (Ariffin et al.,
2013).

Definition 2.3. Z+
(2m−1,2m−1) is defined as a set of positive integers in the

interval
(
2m−1, 2m − 1

)
. In other words, if x ∈ Z+

(2m−1,2m−1), then x is a
m-bit positive integer.

Proposition 2.1. Let F (x1, x2, · · · , xn) be a multiplicative one-way func-
tion that maps F : Zn → Z

+
(2m−1,2m−1). Let F1 and F2 be such func-

tion (either identical or non-identical) such that a1 = F (x1, x2, · · · , xn),
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a2 = F (y1, y2, · · · , yn) and gcd(a1, a2) = 1. Let u, v ∈ Z+
(2n−1,2n−1). Let

(a1, a2) be public parameters and (u, v) be private parameters. Let

G(u, v) = a1u+ a2v, (3)

with the domain of the function G is Z2
(2n−1,2n−1) since the pair of positive

integers (u, v) ∈ Z
2
(2n−1,2n−1) and Z+

(2m+n−1,2m+n−1) is the codomain of G

since a1u+a2v ∈ Z+
(2m+n−1,2m+n−1). If at minimum n−m− 1 = k where 2k

is exponentially large for any probabilistic polynomial time (PPT) adversary
through all possible answers, it is infeasible to determine (u, v) over Z from
G. In addition to that, (u, v) is unique for G(u, v) with high probability.

Proof. Refer to Ariffin et al. (2013). �

Remark 2.3. The preferred pair (u, v) ∈ Z, is the prf-solution for (3). The
preferred pair (u, v) is one of the possible solutions for (3) given by

u = u0 + a2t (4)

and
v = v0 − a1t (5)

for any t ∈ Z.

Remark 2.4. We remark here that the Diophantine equation given by G(u, v)
is solved when the preferred parameters (u, v) over Z are found. That is the
BFHP is prf-solved when the preferred parameters (u, v) over Z are found.

Definition 2.4. (Computational Reduction). Let Π1 and Π2 be two crypto-
graphic hard problems where Π1 6= Π2 . We say that a problem Π1 is re-
ducible to a problem Π2 if we are able to show that Π2 can be solved using
a polynomial time algorithm, A then Π1 also can be solved by A. We denote
this as Π1 ≤p Π2.

Example 2.1. Regarding to RSA equation and IFP which holds the security
of RSA cryptosystem, we say that solving RSA equation ≤p solving IFP. That
means if IFP is solved, then RSA equation also can be solved. �
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3 THE PROPOSED SIGNING SCHEME

DLBF signing scheme uses DLP and BFHP as its hard mathematical problems.
As an example of application of the problems, the first public-key cryptosys-
tem by Diffie and Hellman (1976) utilizes DLP while AAβ cryptosystem by
Ariffin et al. (2013) uses BFHP. In both cryptosystems, no threatening attacks
that fully severe their security strength are known. As a method of verification,
we use some useful properties from Schnorr signature scheme (Schnorr, 1991)
in DLBF. We find it elegant to concatenate the output from the signature gener-
ation process with message M . The resultant concatenation will be passed as
input for any hash function H given H is modelled as random oracle. DLBF
digital signing scheme includes key generation algorithm, signing algorithm
and verification algorithm.

Algorithm 1a Key Generation algorithm

Require: Two integers m and n.
Ensure: Public key: (A,B, g, p). Private keys: (a, b)

1: p
$← Z2m

2: g ← Zp where g is a primitive root of group Zp.

3: a, b
$← Z2n .

4: A← ga (mod p).
5: B ← gb (mod p).
6: Return (A,B, g, p) and (a, b).

We can see that in Algorithm 1a, A,B, g and p have the size of 2m-bits
while a and b have the size of 2n-bits where n > m. It is important for 2m to
be exponentially large to adhere with Definition 2.1.
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Algorithm 1b Signing algorithm

Require: Private keys, (a, b), message, M and hash function, H .
Ensure: Signature, σ.

1: x, y
$← Z2m .

2: c = ax+ by.
3: k

$← Z2n where c− k > 2m.
4: r ← gk (mod p).
5: e = H(M || r).
6: s = c− k
7: Return σ = (x, y, e, s).

It is also important in Algorithm 1b that 2n−m to be exponentially large to
follow Proposition 2.1 when calculating c.

Algorithm 1c Verification algorithm

Require: Signature, σ, public keys, (A,B, g, p) and message, M .
Ensure: ACCEPT or REJECT

1: AxByg−s ≡ r′ (mod p)
2: if H(M || r′) = e then
3: Return ACCEPT
4: else
5: Return REJECT.
6: end if

In the Verification algorithm, we have to check if the message digest of
hash function, H with inputs concatenation ofM and r′ will produce the same
value as e. If yes, σ is valid. Else, σ is a fraud signature.

Theorem 3.1. The proposed signing scheme is correct.
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Proof. It is easy to see that

AxByg−s ≡ gaxgbyg−(c−k)

≡ gc−(c−k)

≡ gk

≡ r′ (mod p)

The correct r′ will produce e′ = H(M || r′) = e. �

Example 3.1. Take n = 64 and m = 32. Along will find p = 2750118359 ∈
Z232 and g = 326 where g is a primitive root of group Zp. Along will also gen-
erate randomly a = 16597089552141307822 and b = 13251521636192730810
where a, b ∈ Z264 . These are his private keys. After that, he will calculate and
find A = 657740542 and B = 2608124422. Together with g and p, these are
his public keys.

Along wants to sign a message, M = 100 and send it to Busu. First,
he will need to generate two random parameters, x = 3590238451 and y =
2499976781 for x, y ∈ Z232 where gcd(x, y) = 1. He then will obtain c =
92716005488189048993954786332. He then will choose k = 8375163739492
536320792514204 randomly from Z264 where c − k > 2m and calculate
r = 487787984. He will concatenate r with M and find e = H(M || r)
where h is a hash function e.g. SHA-256. Finally, he will calculate s =
84340841748696512673162272128 The resultant σ = (x, y, s, e) is Along’s
signature for message, M and will be sent to Busu.

To verify, Busu will calculate r′

6577405423590238451 · 26081244222499976781 · 326−84340841748696512673162272128

≡ 487787984 (mod 2750118359).

Upon obtaining r′, he will concatenate it with the message to be verified, M .
If H(M || r′) = e, then he can verify that σ is indeed come from Along. Else,
σ is a fraud. �
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4 SECURITY ANALYSIS

The aim for this section is to provide vrief security analysis against the new
scheme.

Proposition 4.1. Solving the proposed signing scheme ≤p solving BFHP.

Proof. If an adversary can solve BFHP, then the adversary can find the value
of t such that

a = a0 + xt (6)

b = b0 + yt. (7)

As the values of a0 and b0 can be found from extended euclidean algorithm,
then the secret a and b can also be found. �

Proposition 4.2. Solving the proposed signing scheme ≤p solving DLP.

Proof. If an adversary can solve DLP, then given the public keys,A,B, g and
p, the adversary can find a such that A ≡ ga (mod p) and b such that B ≡ gb
(mod p). �

Remark 4.1. Propositions 4.1 and 4.2 show that to solve this new signing
scheme, the adversary needs to solve either DLP or BFHP which has been
considered the hard problems in Section 2.1 (see page 33) and Section 2.3 (see
page 35) respectively.

Corollary 4.1. Forging the signature for the proposed signature scheme ≤p
solving BFHP or DLP.

Proof. If BFHP or DLP can be solved, then the values of a and b can be
found. Using a and b, adversary can produce c′ such that
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c′ = ax′ + by′ (8)

where x′, y′ $← Z2n . An adversary can proceed to choose random k′
$←

Z22n and calculate s′ = c′ − k′ > 2n. The adversary then can forge e′ =
H(Madv || r′) where Madv is the forgery message and r′ ≡ gk

′
(mod p) then

send the forgery signature, σ′ = (x′, y′, s′, e′) to the intended recipient.

The recipient will use the forgery signature and find that

Ax
′
By′g−s

′ ≡ gax
′
gby
′
g−(c

′−k′)

≡ gc
′−(c′−k′)

≡ gk
′

≡ r′ (mod p)

and verify e′ = H(Madv || r′). �

Remark 4.2. It is still unknown if the problem to find a and b is equivalent to
solving BFHP or DLP.

5 PERFORMANCE ANALYSIS

From Proposition 2.1, values of 2k where n−m−1 = k must be exponentially
large numbers. Considering 2128 is still infeasible to be calculated by modern
computers, we are suggesting n > 258 while m =

⌊
m
2

⌋
. This will causes an

exponentiation of a number in size of at least 2m+n for verification.

Parameters (g, p,A,B) can be stored by signers and verifiers while (a, b )
is exclusively stored by signers. During signing, only one additional and one
modular exponentiation required. In verification process, three modular ex-
ponentiation required. Because the scheme uses fixed g, there will be further
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speed-up in computation on signer’s side.

In Table 1, we compare the number of major processes of our signing
scheme with three renowned signing schemes which are RSA, ElGamal and
Schnorr signature schemes. These processes are calculated from the textbook
algorithm of each cryptosystems. We do not consider the processes from the
further modification or implementation of the cryptosystems. Every scheme
needs to hash its message in both signing and verification algorithms, thus we
omit it in our table.

Signing
Number of Operations

Scheme Signing Algorithm Verification Algorithm

RSA 1 modular exponentiation 1 modular exponentiation

ElGamal
1 modular exponentiation
1 modular multiplication

1 modular multiplication

Schnorr
1 modular exponentiation
1 subtraction

1 modular exponentiation

Our
signing
scheme

1 modular exponentiation
1 addition
1 subtraction

1 modular exponentiations

Table 1: Operations in signature schemes

Out of all three signing schemes that we have compared, only Schnorr
signature scheme is proven secure Seurin (2012) using the formalization of se-
curity for signing scheme Goldwasser et al. (1988). For RSA, even though its
operations are simple, but it needs to utilize the Optimal Asymmetric Encryp-
tion Padding (OAEP) to ensure its security Kaliski and Staddon (1998).

It can be seen that our signing scheme shares the same number of opera-
tions with Schnorr scheme. As addition and subtraction operations can be ig-
nored, a drawback from the scheme is the number of modular exponentiation in
verification algorithm. However, recent implementation shows that complex-
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ity of modular exponentiation can be effectively reduced using several methods
including Montgomery reduction Montgomery (1985) and Karatasuba multi-
plication Karatsuba and Ofman (1963).

6 CONCLUSION

We have shown a new signing scheme called DLBF digital signing scheme in
this paper. Its security is based on the discrete logarithm problem and bivariate
function hard problem. The signing method of DLBF requires one modular
exponentiation and one addition process while the verifying method needs two
modular exponentiation processes. We adopted a method of verification from
Schnorr signature scheme to assist us in building this scheme.
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