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ABSTRACT

This paper presents an upgrade of the AAβ cryptosystem of any
forms preceding this work. The principal idea in this work is to utilize
the Rabin-p decryption strategy upon the original AAβ design. As a re-
sult, this approach leads to a fast and efficient decryption procedure for
theAAβ cryptosystem, along with economical key parameters due to its
significantly smaller size. Next, we demonstrate that breaking the AAβ

function (cryptosystem) is reducible to breaking the Rabin-p cryptosys-
tem, and partially the other way around. Finally, we present another
AAβ-variant with the public key A2 = pqr.
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1 INTRODUCTION

The AAβ cryptosystem is a public key cryptosystem that was designed at first
in earlier 2012, targeted to visualize an asymmetric encryption that utilized
the security instances by a so-called Bivariate Function Hard Problem (Mahad
and Ariffin, 2012). The earlier design also ready to highlight an answer for the
decryption failure state of affairs of Rabin encryption. A full-fledged version
of the AAβ cryptosystem was introduced later in Ariffin et al. (2013). Since
then, the AAβ cryptosystem received a substantial attention from interested
researchers.

Asbullah and Ariffin (2014) suggested using the Garner’s algorithm, which
replaces the computation of Chinese Remaindering Theorem (CRT) during
the AAβ decryption procedure. Consequently, the modification makes the de-
cryption become very fast and reduces the required computational process. A
comparative analysis was also provided, against Rabin-Takagi (Takagi, 1998)
and HIME(R) cryptosystem (Nishioka et al., 2002). Asbullah and Ariffin
(2015) come up with a provably secure design of AAβ cryptosystem in order
to achieve a security level of indistinguishability against chosen cipher attack.

Adnan et al. (2016a) present a practical implementation of the AAβ as a
lightweight asymmetric encryption scheme on an embedded system device.
On the other hand, Adnan et al. (2016b) focused on a timing analysis of the
AAβ encryption on embedded Linux for the Internet of Things (IoT). Mean-
while, Adnan et al. (2017) provides a result for energy analysis of the AAβ
cryptosystem. Their results absolutely indicate that a prospect for the AAβ
cryptosystem is implemented for a lightweight public key encryption on an
embedded device, therefore appropriate additionally for IoT.

A number of cryptanalyses were conducted upon the AAβ cryptosystem.
For instance, we will survey many results on algebraic cryptanalysis and con-
jointly side-channel cryptanalysis upon the same cryptosystem. The work in
Ghafar and Ariffin (2014) shows that the AAβ cryptosystem is at risk of a tim-
ing attack (i.e. a class of side channel attack). Fortuitously, their result solely
discusses within the theoretical sense of timing attack with the assumption
that the attacker ready to collect some leaked values of a particular parameter
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throughout the decryption process. Moreover, Asbullah and Ariffin (2016a)
shows that there exist inappropriate keys selection that can be manipulated to
break the cryptosystem (as analogous as to their prior work in Asbullah and Ar-
iffin (2016b)). These observations due to the algebraic nature implicitly reside
within the public and private keys. Hence, they recommend that the parameters
chosen during key generation for AAβ cryptosystem must be scrutinized and
selected wisely before implementation. Later on, Ghafar and Ariffin (2016)
designed a straightforward power analysis and show that the secret keys of
the AAβ cryptosystem can be retrieved by using such a method. We tend to
highlight that of all the above cryptanalytical results nevertheless are removed
from practical to breaks the cryptosystem, yet the results so useful as security
measures of the AAβ cryptosystem.

In this work, we proposed a design that enhances the AAβ cryptosystem
(of any version prior to this work). Our methodology is to adjust the key gen-
eration algorithm and incorporate the Rabin-p decryption techniques upon the
AAβ decryption procedure. The reason (rationale) by doing so is that our en-
hanced AAβ cryptosystem will be as efficient as the Rabin-p cryptosystem.
Furthermore, we provide the computational reducibility to Rabin-p cryptosys-
tem, and vice versa (partially), in addition to the ones that explained in the
original work of Ariffin et al. (2013).

This paper has been divided into five sections, begins with a brief overview
of the AAβ cryptosystem in Section 1. Section 2 laying out the background
and important materials for this research. Section 3 describes the design of our
enhanced AAβ cryptosystem. In Section 4, we explain the design rationale for
the enhanced version. In addition, we put forward the relation between our
proposed cryptosystem with the security of the Rabin-p cryptosystem. Finally,
we present another AAβ-variant with the public key A2 = pqr. Section 5
concludes the work.
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2 PRELIMINARIES

2.1 AAβ Function

First of all, we will review the AAβ function which is proposed earlier by
Ariffin et al. (2013). Consider the following definition.

Definition 2.1. (Ariffin et al., 2013). Suppose p, q be two distinct primes sat-
isfies 3 (mod 4) where 2k < p, q < 2k+1. Let A1 ∈ Z

+
(23k+4,23k+6)

and

A2 = p2q such that gcd(A1, A2) = 1. Suppose m2 ∈ Z
+
(22k−2,22k−1)

and

t ∈ Z+
(24k,24k+1)

. Then we define the following equation (1) as the AAβ func-
tion.

c = A1m
2 +A2t (1)

Note that the integers (A1, A2) are known parameters and (m, t) be unknown
integers to be solved.

Theorem 2.1. (Ariffin et al., 2013). Let c = A1m
2 + A2t be AAβ function,

then it has a unique solution for m and t, respectively.

The above theorem show that the AAβ function once solved will have a
unique integers m and t, respectively.

2.2 TheAAβ Cryptosystem

The details of the original design of the AAβ cryptosystem is given here, fol-
lowing the description in Ariffin et al. (2013). However, we only give a sim-
plified version of the AAβ decryption algorithm due to Asbullah and Ariffin
(2014). We now describe the key generation, encryption and decryption pro-
cedure of the original AAβ cryptosystem as follows.
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Algorithm 2.1 Key Generation

1. Generate two primes 2k < p, q < 2k+1 such that p, q ≡ 3 (mod 4)

2. Set A2 = p2q

3. Randomly select A1 ∈ {(23k+4, 23k+6)} where gcd(A1, A2) = 1

4. Compute the integer d′ satisfying A1d
′ ≡ 1 (mod pq)

5. Output a tuple (A1, A2) as the public key and a tuple (d′, p, q) as the
private key.

Algorithm 2.2 Algorithm for Encryption

1. Generate a plaintext m ∈ {(22k−2, 22k−1)}

2. Generate a plaintext t ∈ {(24k, 24k+1)}

3. Set the ciphertext c = A1m
2 +A2t

Remark 2.1. Assume the AAβ decryption algorithm as depicted in Ariffin
et al. (2013) the utilization of the Chinese Remaindering Theorem (CRT) is
needed to solve simultaneous congruence equations. Be that as it may, there
exists an alternative method, which is faster and more efficient method known
as the Garner’s algorithm (Asbullah and Ariffin, 2014). Consequently, we re-
mark that theAAβ decryption algorithm used in this section taken from Asbul-
lah and Ariffin (2014) since it is more effective than its prior original version
as follows.
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Algorithm 2.3 Algorithm for Decryption

1. Determine w ≡ cd′ (mod pq)

2. Compute mp ≡ w
p+1
4 (mod p)

3. Compute mq ≡ w
q+1
4 (mod q)

4. Compute j ≡ p−1 (mod q)

5. Calculate h1 ≡ (mq −mp)j (mod q)

6. Calculate h2 ≡ (−mq −mp)j (mod q)

7. Calculate m1 = mp + h1p

8. Calculate m2 = mp + h2p

9. Calculate m3 = pq −m2

10. Calculate m4 = pq −m1

11. For mi < 22k−1, determine ti =
c−A1m2

i
A2

where i = 1, 2, 3, 4

12. Sort the pair (mi, ti) for integer ti, else reject

13. Output the plaintext tuple (m, t)

2.3 Useful Lemmas

In this section we provides two important lemmas that will be useful later for
our work in this paper.

Lemma 2.1. (Asbullah and Ariffin, 2016c). Let p ≡ 3 (mod 4) be a prime
number. Let c ≡ m2 (mod p2) where m is an unknown integer such that
m < p2 and gcd(m, p) = 1. Then a solution to c ≡ m2 (mod p2) can be
determine by m1 = mp + jp where mp ≡ c

p+1
4 (mod p), j ≡ i

2mp
(mod p)

such that i = c−mp2
p . Furthermore m2 = p2 −m1 is the another solution.
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Lemma 2.2. (Asbullah and Ariffin, 2016c). Let m1 and m2 be the two solu-
tions from Lemma 2.1. Then one of the two solutions less than p2

2 .

3 AAβ CRYPTOSYSTEM: ENHANCED VERSION

This section is dedicated to describe the new design for enhanced version of
the AAβ-cryptosystem. Then, we provide the proof of correctness.

3.1 The Proposed Cryptosystem

Algorithm 3.1 Key Generation of The Proposed Cryptosystem

1. Generate primes 2k < p, q < 2k+1 where p, q ≡ 3 (mod 4)

2. Set A2 = p2q

3. Generate random integer A1 ∈ {(23k+4, 23k+6)} satisfying
gcd(A1, A2) = 1

4. Compute d such that A1d ≡ 1 (mod p2)

5. Output a tuple (A1, A2) as the public key and a tuple (d, p) as the private
key.

Remark 3.1. Note that the following encryption algorithm (Algorithm 3.2) is
identical to the original encryption algorithm (Algorithm 2.2).
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Algorithm 3.2 Encryption Algorithm of The Proposed Cryptosystem

1. Generate a plaintext m ∈ {(22k−2, 22k−1)}

2. Generate a plaintext t ∈ {(24k, 24k+1)}

3. Set the ciphertext c = A1m
2 +A2t

Algorithm 3.3 Decryption Algorithm for The Proposed Cryptosystem

1. Set w ≡ dc (mod p2)

2. Determine mp ≡ w
p+1
4 (mod p)

3. Determine i = w−mp2
p

4. Determine j ≡ i
2mp

(mod p)

5. Set m1 = mp + jp

6. Output m = m1 if m1 < 22k−1. Else output m = p2 −m1

7. Compute t = c−A1m2

A2

8. Output the plaintext tuple (m, t)

3.2 Proof of Correctness

Theorem 3.1. Let c = A1m
2 + A2t be the ciphertext output by Algorithm

3.2. Then such ciphertext will correctly decrypted by the Algorithm 3.3 and
retrived the plaintext tuple (m, t).

Proof. Suppose c be the ciphertext with parameters dictated in the Algorithm
3.2. The ciphertext c then can be decrypted efficiently as follows. Since d such
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that dA1 ≡ 1 (mod p2), we proceed to determine w as follows.

w ≡ dc ≡ d(A1m
2 +A2t) ≡ dA1m

2 ≡ m2 (mod p2) (2)

Then, by using Lemma 2.1, the equation (2) efficiently solved, which produces
two distinct solution m1 and m2. From Lemma 2.2, only one of m1 and m2

satisfies an integer less than p2

2 . Since we have m < 22k−1 < p2

2 , thus we get
the unique m. We further to compute t = c−A1m2

A2
. Hence, analytically the

ciphertext c correctly decrypted by the Algorithm 3.3 and output the unique
solution of the tuple (m, t). �

3.3 A Toy Example

Suppose we have two communicating parties, namely Bob as the sender of a
message and Alice as its corresponding receiver. Let the security parameter
k = 31.

Key generation:
Alice generate two distinct primes p = 2300864171, q = 3699229571.

1. Choose A1 = 571387513048875070687101686822

2. Compute d ≡ A1
−1 (mod p2) = 4439689156782303504

3. Alice publish her public key’s A1, A2

Encryption:
Bob receive Alice’s public key. He would like to send a messagem = 1470703929037549618
and t = 18285126841695784886439802726436769485.

1. Compute c = A1m
2+A2t = 1593983276899641926132917651108239772335

503429473873198815204073863

2. Bob send c to Alice as his ciphertext.
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Decryption:
Alice receives a ciphertext c = 609516451157084983009264189549286 from
Bob. To decrypt c, Alice then

1. Compute w ≡ cd (mod p2) = 1171061998070371913

2. Compute mp ≡ c
p+1
4 (mod p) = 2008449701

3. Compute i = w−m2
p

p = −1244231728

4. Compute j ≡ i
2mp

(mod p) = 639196327

5. Compute m1 = mp + jp = 1470703929037549618

6. Since m1 < 22k−1, set m = m1

7. Compute t = c−A1m2

A2
= 18285126841695784886439802726436769485.

8. Return the plaintext m and t

4 DISCUSSIONS

4.1 Enhancement from the Original Version

Table 1 illustrates the comparison between the original AAβ (Ariffin et al.,
2013), the fast variant AAβ (Asbullah and Ariffin, 2014) and the proposed
enhanced variant.
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Original AAβ Fast AAβ Enhanced Version
Public keys |A1|, |A2| = 3k |A1|, |A2| = 3k |A1|, |A2| = 3k

Private keys |d′| = 2k, |p|, |q| = k |d′| = 2k, |p|, |q| = k |d| = 2k, |p| = k

Mod Exponent 2 2 1
Mod Inverse 2 1 1
Mod Reduction 5 3 2
Division 4 4 2
Novak’s attack Yes Yes No

Table 1: Comparison between three versions of AAβ Cryptosystem in
consideration.

1. Note that the improved version solely use d, p as the private keys through-
out key generation method whereas within the original version, addition-
ally to the private keys d′, p is another large prime q. That means that
smaller key size thus ends up for less storage and quicker computational
operations. Furthermore, this step emphasizes that we tend to solely
need to find q for creating the public key A2 = p2q, then the large prime
q may be discarded later on.

2. Our proposed decryption method in this work takes advantage from the
efficiency of the Rabin-p decryption algorithm, that solely needed one
prime p coupled with a private integer d rather than two primes p, q as
within the original version, with additional private key d′. Such necessi-
ties would have an effect on the general operations in term of computa-
tional advantages. For example, as shown in Table 1, the modular oper-
ations that iare required for the proposed upgraded version are minimal
as compared to the first version and the another variant in consideration.

3. Furthermore, the decryption process in our proposed work takes advan-
tage from the security feature provided within the Rabin-p cryptosystem
in term of resistant against the Novak’s attack; since the upgraded ver-
sion of the proposed algorithm (i.e.Algorithm 3.3) does not execute the
computation of the CRT or the Garner’s algorithm. Therefore, we have a
tendency to claimed that the upgraded version provides a further security
feature. Refer to (Asbullah and Ariffin, 2016c) for details.
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4.2 Computational Reducibility

In the original version, Ariffin et al. (2013) show that for any efficient algo-
rithm able to factor the modulus A2 = p2q, then such algorithm also able
to solve the AAβ function. Furthermore, they also prove that the AAβ func-
tion can be solved if there exists algorithm that can solve the Bivariate Func-
tion Hard Problem (BFHP). This section will provide another cases regarding
breaking the AAβ function (cryptosystem) with respect to the computational
reducibility as follows.

Theorem 4.1. Breaking the AAβ function (cryptosystem) is reducible to solv-
ing the Rabin-p cryptosystem.

Proof. Suppose we are given a problem satisfies Definition 2.1, i.e. the AAβ
function. Notice that there exists an integer x such that A1x ≡ 1 (mod A2).
Thus, we can compute w′ ≡ cx ≡ m2 (mod A2). Suppose there exists an
algorithm able to solve the Rabin-p cryptosystem, then the same algorithm
eventually able to solve w′ ≡ m2 (mod A2). Since the AAβ function (cryp-
tosystem) has a unique solution for the integer m, hence we proceed to ob-
tained the unique integer t such that t = c−A1m2

A2
. �

Theorem 4.2. Solving the Rabin-p cryptosystem is partially reduce to break-
ing the AAβ function (cryptosystem) .

Proof. Let c ≡ m2 (mod p2q) be a ciphertext output by Rabin-p cryp-
toysystem. Suppose there exists an algorithm able to solve the AAβ function,
therefore the same algorithm can be used to solve the Rabin-p cryptosystem
whenever m satisfies 22k−2 < m < 22k−1. Since the integer m from the
Rabin-p cryptosystem is taken from m ∈ {(0, 22k−1)}, yet such algorithm
only efficiently solve for the set of integers in the range (22k−2, 22k−1). �

4.3 AAβ-variant with the public keyA2 = pqr

In this section, we might consider using the modulus A2 = pqr where p, q
and r are three distinct large primes and incorporated within the AAβ cryp-

12 International Journal of Cryptology Research



Fast and Efficient Design for AAβ Cryptosystem

tosystem. All the other parameters are the same as the proposed enhanced
version (see Section 3). We show the conception of solving the solutions of
the equation w ≡ cd (mod pq) during decryption algorithm as follows.

Algorithm 4.1 AAβ Decryption with the public key A2 = pqr

Input: A ciphertext c and the private key (d, p, q)
Output: The plaintext m, t

1: Compute w ≡ cd (mod pq)

2: Compute mp ≡ w
p+1
4 (mod p)

3: Compute mq ≡ w
q+1
4 (mod q)

4: Compute j ≡ p−1 (mod q)
5: Compute h1 ≡ (mq −mp)j (mod q)
6: Compute h2 ≡ (−mq −mp)j (mod q)
7: Compute m1 = mp + h1p
8: Compute m2 = mp + h2p
9: Compute m3 = pq −m2

10: Compute m4 = pq −m1

11: Compute ti =
c−A1m2

i
A2

such that mi < 22k−1 for i = 1, 2, 3, 4
12: Sort the pair (mi, ti) for integer ti, else reject
13: Return the plaintext m, t

4.3.1 Proof of Correctness for Algorithm 4.1

It is obvious that the decryption works and the uniqueness of the solution is
preserved (see Theorem 4.3).

Theorem 4.3. Let c = A1m
2 + A2t be the AAβ ciphertext with A2 = pqr

ciphertext. Then the Algorithm 4.1 will output the unique m < 22k−1.

Proof. Suppose c = A1m
2 +A2t be the ciphertext output by Algorithm 3.2

with parameters as described in its procedure except with A2 = pqr.

From c ≡ m2 (mod pq), we have c − m2 ≡ 0 (mod pq). Thus, pq |
c −m2. Since 22k−2 < m < 22k−1, therefore it is sufficient just solving for
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c ≡ m2 (mod pq) using Chinese Remainder Theorem or Garner’s method of
which give exactly four distinct solution m1,m2,m3 and m4 satisfies c ≡ m2

(mod pq). In addition, Theorem 2.1 analytically prove that such ciphertext c
has unique solution for m and t. Therefore the Algorithm 4.1 will provide a
1-to-1 decryption. �

4.3.2 Demerit ofAAβ-variant with the public keyA2 = pqr

Observed that, the decryption performs by Algorithm 4.1 deemed as less effi-
cient in comparison with Algorithm 3.3. The first reason is because we need
to generate another distinct prime r for the public key A2 = pqr, thus increase
the cost of generating additional random prime numbers for every modulus
generated.

Secondly, note that the decryption performs by Algorithm 4.1 need to solve
the congruence w ≡ c (mod pq). Therefore, this computational procedure in-
volves the same operational cost as the decryption algorithm in the original
Rabin cryptosystem. We recall that this operation execute two modular expo-
nentiation of modulo p and of modulo q. It then further with recombination
process using the Garner’s algorithm. As stated in Theorem 4.3, the result of
such procedure will produce four different integers compared to Algorithm 3.3
which only produces the unique solution m. Hence, it obviously increases the
running time in this matter.

To make it worst, this AAβ-variant with the public key A2 = pqr involves
Garner’s algorithm of which susceptible to the Novak’s attack thus can affect
the security.

5 CONCLUSION

Taking everything into account, this paper introduces an upgrade of the AAβ
cryptosystem of any forms preceding this work. The principal idea in this work
utilizes the Rabin-p decryption strategy upon the originalAAβ design. Thusly,
this approach leads to a fast and efficient decryption procedure for the AAβ
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cryptosystem, along with economical key parameters due to its significantly
smaller size. Besides, we demonstrate that breaking the AAβ function (cryp-
tosystem) is reducible to breaking the Rabin-p cryptosystem, and partially the
other way around. Finally, we present anotherAAβ-variant with the public key
A2 = pqr, with a (negative) discussion surround the said variant. In any case,
we intend to analyze the upgraded AAβ cryptosystem and the majority of its
forerunner form as a future work; for instances, the rigor analysis on running
time, memory consumption, hardware and software implementations, etc.
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