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ABSTRACT

Elliptic Net is a powerful method to compute cryptographic pair-
ings or scalar multiplication. The elliptic net rank one originated from
the nonlinear recurrence relations, also known as the elliptic divisibil-
ity sequence. In this paper, a generalization of equivalent sequences is
defined. Combining the new generalization with a few restrictions on
the initial value, the paper further proposes and discusses an elliptic net
scalar multiplication of rank one for Weistrass equation and non-singular
elliptic curve.

Keywords: Equivalence, Net, Divisible, Polynomials

1 INTRODUCTION

Elliptic net scalar multiplication was first introduced by Japanese cryptogra-
pher (Kanayama et al., 2014). His method adapts Stanges net theory (Stange,
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2007b) and some research directions of elliptic net can be seen in previous
year (Muslim and Said, 2017). The rich structure of elliptic net and its scalar
multiplication resulted in cryptography field, in which it is used to solve el-
liptic curve discrete logarithm problem (Lauter and Stange, 2008), compute
Ate pairing (Matsuda et al., 2009), and optimize pairing (Tang et al., 2014).
Continuous contributions in cryptosystem and net developments are achieved
since the discrete log problem on elliptic curve was successfully reduced to a
finite field.

In this paper, we begin by reviewing elliptic divisibility sequence with its
equivalent properties and division polynomials of the elliptic curve. Next, we
propose the elliptic net scalar multiplication of rank one by using new proper-
ties. Finally, we discuss the simplification of elliptic net initial values.

2 ELLIPTIC DIVISIBILITY SEQUENCE

Morgan Ward introduced an elliptic divisibility sequence in the form of hm+n

hm−nh
2
1 = hm+1hm−1h

2
n − hn+1hn−1h

2
m as a special sequence with the ini-

tial value of h0 = 0, h1 = 1, h2 6= 0 and h3 6= 0 (Ward, 1948). Mean-
while, the first cryptographic applications of these sequences have been dis-
cussed by Shipsey (2000) while the applications were extended by Stange
(2007a) and Kanayama et al. (2014). By considering n = 2 and h21 = 1,
two frequently used equations are h2nh2 = hn+2hnh

2
n−1 − hnhn−2h2n+1 and

h2n+1 = hn+2h
3
n − hn−1h

3
n+1. Some important topics of elliptic divisibil-

ity sequence for cryptographers are the indices (Silverman and Stange, 2011),
rank of apparition Gezer and Bizim (2009) and equivalence (Bizim, 2009,
Shipsey, 2000). The equivalence theory will be discussed in the next section.

2.1 Proper and improper sequences

The divisibility sequence can be categorized to proper and improper. A proper
elliptic divisibility sequence satisfies the conditions that h0 = 0, h1 = 1 and
h2h3 6= 0.
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For sequences which do not satisfy one or more of these conditions and are
therefore known as improper elliptic divisibility sequences. For examples, the
integer sequences of {0, 1, 1,−1, 1, 2,−1,−3,−5, 7,−4,−23, 29, 59, · · · } and
{1, 1, − 3, 11, 38, 249, − 2357, 8767, 496035,−3769372,−299154043, · · · }
constitute the proper and improper forms of the said sequences that meet the
condition such that for n|m then hn|hm.

2.2 Equivalent elliptic divisibility sequences

The term of equivalent sequences only can be used for proper sequences, in
which the h0 = 0, h1 = 1, h2 ·h3 6= 0 and h4 divides h2. Now, we will show
how the equivalent sequences satisfy the nonlinear recurrence relations.

Proposition 2.1. Consider p, u and v as proper elliptic divisibility sequences
and satisfy the nonlinear recurrence relations, pm+npm−np

2
1 = pm+1pm−1p

2
n−

pn+1pn−1p
2
m, um+num−nu

2
1 = um+1um−1u

2
n−un+1un−1u

2
m and vm+nvm−n

v21 = vm+1vm−1v
2
n − vn+1vn−1v

2
m. Let c1, c2 and c3 be any constant inte-

gers and there are equivalent elliptic divisibility sequences {jn}, {kn}, {ln}
such that jn = cn

2−1
1 pn, kn = cn

2

2 un and ln = cn3vn Then, jm+njm−n =
jm+1jm−1j

2
n − jn+1jn−1j

2
m, km+nkm−n = km+1km−1k

2
n − kn+1kn−1k

2
m

and lm+nlm−n = lm+1lm−1l
2
n − ln+1ln−1l

2
m.

Proof. Proof for jn = cn
2−1

1 pn with jm+njm−n = jm+1jm−1j
2
n− jn+1jn−1j

2
m

is similar to Shipsey (2000). We will continue to prove for kn and ln. Since
p, u and v are proper elliptic divisibility sequences, i.e p1 = u1 = v1 =
1 then the nonlinear recurrence relations can be simplified to pm+npm−n =
pm+1pm−1p

2
n − pn+1pn−1p

2
m, um+num−n = um+1um−1u

2
n − un+1un−1u

2
m

and vm+nvm−n = vm+1vm−1v
2
n − vn+1vn−1v

2
m.
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For

km+nkm−n = c
(m+n)2

2 um+nc
(m−n)2
2 um−n (1)

= c
2(m2+n2)
2

(
um+1um−1u

2
n − un+1un−1u

2
m

)
(2)

= cm
2

2 um+1c
m2

2 um−1c
2n2

2 u2n − cn
2

2 un+1c
n2

2 un−1c
2m2

2 u2m (3)

= c
(m+1)2

2 um+1c
(m−1)2
2 um−1

(
cn

2

2 un

)2
− c(n+1)2

2 un+1c
(n−1)2
2

un−1

(
cm

2

2 um

)2
(4)

= km+1km−1k
2
n − kn+1kn−1k

2
m (5)

and for

lm+nlm−n = cm+n
3 vm+nc

m−n
3 vm−n (6)

= c2m3 vm+nvm−n (7)

= c2m3
(
vm+1vm−1v

2
n − vn+1vn−1v

2
m

)
(8)

= cm+1
3 vm+1c

m−1
3 vm−1 · v2n − vn+1vn−1(c

m
3 vm)2 (9)

= lm+1lm−1l
2
n − ln+1ln−1l

2
m (10)

�

The above steps complete the proof. From Proposition 2.1, we can say that
any elliptic divisibility sequences are equivalent if there exist integers c1, c2
and c3 such that for all n, cn

2−1
1 pn = cn

2

2 un = cn3vn. The sequence of cn3vn
is a generalization form that will be further used to construct elliptic net scalar
multiplication.

3 ELLIPTIC CURVE

The general Weierstrass equation (Silverman, 1986) can be defined as E :
y2 + a1xy+ a3y = x3 + a2x

2 + a4x+ a6 where an elliptic curve E is the set
of algebraic solutions of y2 = x3 + ax+ b whereby a and b are real numbers
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with the following expression:

b2 = a21 + 4a2 (11)

b4 = 2a4 + a1a3 (12)

b6 = a23 + 4a6 (13)

b8 = a21a6 + 4a2a6 − a1a3a4 + a2a
2
3 − a24 (14)

D = −b22b8 − 8b34 − 27b26 + 9b2b4b6 (15)

The auxiliary polynomials denoted by φn, ωn are as follow:

φn = xψ2
n − ψn+1ψn−1 (16)

4yωn = ψn+2ψ
2
n−1 − ψn−2ψ

2
n+1 (17)

Then, for the curve E of the polynomials φn(P ), ψn, ωn can be written as,

[n]P =

(
φn(P )

ψn(P )2
,
ωn(P )

ψn(P )3

)
(18)

The division polynomials ψn in x, y and the first four division polynomials are

ψ1 = 1, ψ2 = 2y + a1x+ a3, (19)

ψ3 = 3x4 + b2x
3 + 3b4x

2 + 3b6x+ b8, (20)

ψ4 = (2y + a1x+ a3)(2x
6 + b2x

5 + 5b4x
4 + 10b6x

3 + 10b8x
2+

(b2b8 − b4b6)x+ b4b8 − b26) (21)

Therefore, the nonlinear recurrence relations for division polynomial ψn when
n ≥ 2 are

2yψ2n = ψn(ψn+1h
2
n−1 − ψn−2ψ

2
n+1) (22)

ψ2n+1 = ψn+2ψ
3
n − ψn−1ψ

3
n+1 (23)

4 ELLIPTIC NET SCALAR MULTIPLICATION OF
RANK ONE

The first theory on elliptic net scalar multiplication was proposed by Kanayama
et al. (2014) and followed by Chen et al. (2017), with both methods depend on
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Ŵ (i) = θi
2−1W (i) in their net. It is important to clarify that not all equiv-

alences of proper elliptic divisibility sequences can be used to construct the
rank one elliptic net. In our method, the equivalence theory in elliptic net lies
on Ŵ (2) = 1 and θj . We propose the following definition and lemmas for
elliptic net scalar multiplication of rank one using the generalized equivalent
elliptic divisibility sequence.

Definition 4.1. Let {W (j)} be the proper elliptic divisibility sequence over a
finite field K and gcd(2m + 1, 3) = 1. Then Ŵ (j) = θjW (j) is a sequence
defined over K and Ŵ (2) = 1 with θ2 =W (2)−1.

Lemma 4.1. Consider {W (j)} from Definition 4.1, and point P = (x1, y1)
on elliptic curve of the type y2 = Ax+B with Char(K) ≥ 5. The elliptic net
scalar multiplication of rank one [k]P = (xk, yk) can be derived as,

xk = x1 −
Ŵ (k − 1)Ŵ (k + 1)

Ŵ (k)2
(24)

yk =
Ŵ (k − 1)2Ŵ (k + 2)− Ŵ (k + 1)2Ŵ (k − 2)

4y1Ŵ (k)3
(25)

Proof. Since Ŵ (j) = θjW (j), this implies that Ŵ (j) = θ−jW (j). Then,

xk = x1 −
W (k − 1)W (k + 1)

W (k)2
(26)

= x1 −
θ−(k−1)Ŵ (k − 1)θ−(k+1)Ŵ (k + 1)

[θ−kŴ (k)]2
(27)

= x1 −
θ−(k−1)−(k+1)Ŵ (k − 1)Ŵ (k + 1)

θ−2kŴ (k)2
(28)

xk = x1 −
Ŵ (k − 1)Ŵ (k + 1)

Ŵ (k)2
(29)
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and for

yk =
W (k − 1)2W (k + 2)−W (k + 1)2W (k − 2)

4y1W (k)3
(30)

=

(
θ−(k−1)Ŵ (k − 1)

)2

θ−(k+2)Ŵ (k + 2)−
(
θ−(k+1)Ŵ (k + 1)

)2

θ−(k−2)Ŵ (k − 2)

4y1
(
θ−kŴ (k)

)3

(31)

=
θ−2(k−1)Ŵ (k − 1)2θ−(k+2)Ŵ (k + 2)− θ−2(k+1)Ŵ (k + 1)2θ−(k−2)Ŵ (k − 2)

4y1
(
θ−kŴ (k)

)3

(32)

=
θ−2k+2−k−2Ŵ (k − 1)2Ŵ (k + 2)− θ−2k−2−k+2Ŵ (k + 1)2Ŵ (k − 2)

4y1
(
θ−3kŴ (k)3

) (33)

yk =
Ŵ (k − 1)2Ŵ (k + 2)− Ŵ (k + 1)2Ŵ (k − 2)

4y1Ŵ (k)3
(34)

�

Lemma 4.2. Consider {W (j)} from Definition 4.1, and point P = (x1, y1)
on a non-super singular elliptic curve of type y2 + xy = x3 + a2x

2 + a6
with Char(K) = 2. The elliptic net scalar multiplication of rank one [k]P =
(xk, yk) can be derived as,

xk = x1 +
Ŵ (k − 1)Ŵ (k + 1)

Ŵ (k)2
(35)

yk = x1 + y1 +

(
1 + x1 +

y1
x1

)
Ŵ (k − 1)Ŵ (k + 1)

Ŵ (k)2
+
x1Ŵ (k + 1)

2
Ŵ (k − 2)

Ŵ (k)3

(36)
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Proof. The derivation for xk is similar to Lemma 4.1. We will proceed to
prove for yk as follows,

yk = x1 + y1 +

(
1 + x1 +

y1
x1

)
W (k − 1)W (k + 1)

W (k)2
+
x1W (k + 1)

2
W (k − 2)

W (k)3

(37)

= x1 + y1 +

(
1 + x1 +

y1
x1

)
θ−(k−1)Ŵ (k − 1)θ−(k+1)Ŵ (k + 1)(

θ−kŴ (k)
)2 +

x1

(
θ−(k+1)Ŵ (k + 1)

)2
θ−(k−2)Ŵ (k − 2)(

θ−kŴ (k)
)3 (38)

= x1 + y1 +

(
1 + x1 +

y1
x1

)
θ−2kŴ (k − 1)Ŵ (k + 1)

θ−2kŴ (k)2
+

x1θ
−2(k+1)Ŵ (k + 1)

2
θ−(k−2)Ŵ (k − 2)

θ−3kŴ (k)3
(39)

yk = x1 + y1 +

(
1 + x1 +

y1
x1

)
Ŵ (k − 1)Ŵ (k + 1)

Ŵ (k)2
+
x1Ŵ (k + 1)

2
Ŵ (k − 2)

Ŵ (k)3

(40)

�

Significantly, the factor of θ−k is in the simplest form by using the gener-
alized sequence.

4.1 Discussion

The initial values in the elliptic net scalar multiplication of rank one are as
follow:

Ŵ (0) = 0, Ŵ (1) = 1, Ŵ (2) = 1, Ŵ (3) = p̂, Ŵ (4) = q̂,

Ŵ (5) = Ŵ (3 + 2)Ŵ (3− 2)

= Ŵ (4)Ŵ (2)[Ŵ (2)]2 − Ŵ (3)Ŵ (1)[Ŵ (2)]2

= q̂ − p̂3 (41)
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Meanwhile, the required initial values for Stange method are

Ŵ (0) = 0, Ŵ (1) = 1, Ŵ (2) = p̂, Ŵ (3) = q̂, Ŵ (4) = r̂,

Ŵ (5) = Ŵ (3 + 2)Ŵ (3− 2)

= Ŵ (4)Ŵ (2)[Ŵ (2)]2 − Ŵ (3)Ŵ (1)[Ŵ (2)]2

= r̂p̂3 − q̂p̂2 (42)

Ŵ (5) is the last initial value required in the net. The next term for Ŵ (6) can
be calculated using nonlinear recurrence relation of

Ŵ (m+n)Ŵ (m−n) = Ŵ (m+1)Ŵ (m−1)[Ŵ (n)]2−Ŵ (n+1)Ŵ (n−1)[Ŵ (m)]2

(43)
such that

Ŵ (6) = Ŵ (5)Ŵ (3)[Ŵ (2)]2−Ŵ (3)Ŵ (1)[Ŵ (4)]2 = p̂[(q̂− p̂3)− q̂2] (44)

and in Stange method,

Ŵ (6) = Ŵ (5)Ŵ (3)[Ŵ (2)]2−Ŵ (3)Ŵ (1)[Ŵ (4)]2 = q̂(r̂p̂5−q̂p̂4)−r̂2 (45)

Therefore, the elliptic net scalar multiplication (Chen et al., 2017) and our
restriction are shown to provide better simplification.

We equip the following numerical instance for calculating elliptic net scalar
multiplication:

Example 4.1. Consider an elliptic curve E : y2 + xy = x3 + 1 and point
P = (1, 0) ∈ E. After that, 5P is computed.

Solution:

First, the initial values of elliptic net were obtained from division polynomials
of equation 19 until equation 21. For ψn = Ŵ (n) then ψ0 = Ŵ (0) = 0, ψ1 =
Ŵ (1) = 1, ψ2 = Ŵ (2) = 1, ψ3 = Ŵ (3) = 18, ψ4 = Ŵ (4) = 27.
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From equation 35,

xk = x1 +
Ŵ (k − 1)Ŵ (k + 1)

Ŵ (k)2

x5 = x1 +
Ŵ (4)Ŵ (6)

Ŵ (5)2

= 1 +
27(−12960)

92

= −349839

92

The y-coordinate was computed with equation 36, such that

yk = x1 + y1 +

(
1 + x1 +

y1
x1

)
Ŵ (k − 1)Ŵ (k + 1)

Ŵ (k)2
+
x1Ŵ (k + 1)

2
Ŵ (k − 2)

Ŵ (k)3

y5 = 1 + 0 + (1 + 1 + 0)
Ŵ (4)Ŵ (6)

Ŵ (5)2
+

(1)Ŵ (6)
2
Ŵ (3)

Ŵ (5)3

= 1 + (2)
(27)(−12960)

92
+

(−12960)2(18)
93

=
3017010969

93

Therefore, when P = (1, 0), 5P =
(
−349839

92
, 3017010969

93

)
.

Note that in order to generate point for elliptic curve stated in Lemma
4.1 and Lemma 4.2, there are five algorithmic method that can be used. The
methods are the brute force search, sieve assisted search, homogeneous space
search, Heegner point and canonical height search (Silverman, 1999). Among
these, canonical height search computed faster with 28 digits of accuracy com-
pared to others. In addition, the non-identity point on the elliptic curve can be
generated by an explicit formulae (Everest and Ward, 2000). With q and u, be
known as parameter of the elliptic curve of the type y2+xy = x3+a2x

2+a6,
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the explicit formula of x and y coordinate are denoted as,

x = xu =
∑
n∈Z

qnu

(1− qnu)2
− 2

∑
n≥1

nqn

(1− qn)2

y = yu =
∑
n∈Z

q2nu2

(1− qnu)3
+
∑
n≥1

nqn

(1− qn)2
.

5 CONCLUSION

This research proposes a generalization of the equivalent elliptic divisibility
sequences and uses the generalization form to derive the elliptic net scalar
multiplication of rank one. Furthermore, the term in the proposed elliptic net
scalar multiplication was found to be simpler than Stange method. Future
research may consider other equivalence theory that satisfies the elliptic net.
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