
International Journal of Cryptology Research 6(1): 16 - 30 (2016)

An Optimized Pairing-Based Cryptography Library
for Android

Syh-Yuan Tan1, Chee-Siang Wong2, and Hoon-Herk Ng1

1Faculty of Information Science and Technology, Multimedia
University, Malaysia

2Faculty of Information and Communication Technology, Universiti
Tunku Abdul Rahman, Malaysia

E-mail: sytan@mmu.edu.my, wongcs@utar.edu.my,
malco ng@live.com.my

ABSTRACT

There are numerous pairing-based cryptography (PBC) libraries avail-
able for desktop-based applications. However, these libraries are mostly
not compatible or not optimized for mobile phone operating systems
(OS) such as Android. In this paper, we show the inconsistency on
benchmarking result for Java-based PBC libraries between Java Vir-
tual Machine (JVM) and Dalvik Virtual Machine (DVM). Identifying
the root cause, we present a new PBC library for Android, namely,
mobile-PBC (mPBC) which combines the strengths of several Java PBC
libraries and optimized for Android’s DVM. The mPBC library out-
performs the existing Java-based PBC libraries in DVM, yet as effi-
cient as the fastest PBC library to date in the JVM. In particular, the
pre-processed Tate pairing operation in mPBC uses 426.11ms in DVM
(Samsung GT-N7000) and 4.50ms in JVM (Sager NP5160).

Keywords: Pairing-Based Cryptography, Elliptic Curve cryptography,
Java, Android, Library



mPBC: An Efficient Pairing-Based Cryptography Library for Android

1 INTRODUCTION

There has been much interest in recent years in reducing the processing power
of cryptographic schemes. Due to the rise of mobile platform and networking
ability, a cryptography library which is suitable for mobile phone applications
may help in increasing the efficiency of cryptographic computations. Even
though there are a lot of cryptography libraries well developed for desktop-
based applications, not much were done for mobile devices which have limited
battery life and processing power.

Up to date, there are only a few elliptic curve cryptography libraries that
support pairing operations written in Java (De Caro and Iovino, 2011, Dong,
2010, Tan et al., 2010) which work in both Dalvik Virtual Machine (DVM) and
Java Virtual Machine (JVM). In 2014, Liu et al. (2014) ported the PBC library
(Lynn, 2010) from C to Java by using Java Native Interface (JNI) and Android
Native Development Kit (NDK). Compared to jPBC by De Caro and Iovino
(2011), Liu et al. (2014) is a more complete Java version of PBC. However,
Liu et al.’s library runs on Android 4.0.3 or higher and they did not manage
to provide performance comparison with jPBC which can only be run on An-
droid 2.2 or lower. This is the main drawback of using C libraries on Android
in which they loss the platform independent feature. For instance, even though
works by De Caro and Iovino (2011) and Liu et al. (2014) performed signifi-
cantly faster than the other Java-based pairing libraries, their compilations are
tied to the underlying hardware, e.g., the library compiled for ARM architec-
ture cannot run on x86 architecture.

In short, one can view performance and platform independent as the trade-
off to each other. On the other hand, we prefer to maintain the platform inde-
pendent feature of the pairing libraries, so that pairing cryptosystems can run
on any device that supports Java.

1.1 Motivation

Our motivation of this work came after the benchmarking on the Java pairing
libraries in JVM and DVM. The benchmarks were done in a loop of 1100 times

International Journal of Cryptology Research 17



Syh-Yuan Tan, Chee-Siang Wong & Hoon-Herk Ng

Platform JVM1 JVM2 DVM
Device Sager NP5160 RaspBerry Pi II Samsung GT-

N7000
CPU Quad-core 2

GHz Intel Core
i7-2630M

Quad-core 900Mhz
ARM Cortex-A7

Dual-core 1.4 GHz
ARM Cortex-A9

RAM 4 GB 1GB 1 GB
OS Windows 8.1 Raspbian Wheezy Android 4.2.2
JDK/SDK
Version

JDK 1.8.0.25 JDK 1.8.0.25 SDK 23.0.5

Table 1: Test Environment.

for JVM tests with the first 100 times neglected to avoid the caching of proces-
sor. The specification of our machines to carry out the target benchmarks are
shown in Table 1.

Table 2 shows the timing performance (in nanoseconds) of the libraries
under JVM1, JVM2 and DVM on the Type-A curve y = x3 + x mod p where
p is a 512-bit prime with 160-bit Solinas prime order q (Lynn, 2010). If an
operation is not available under a library, we mark it with the symbol ’-’. For
example, times of pre-processing multiplication and pre-processing pairing are
recorded for jPBC which is the only library provides such features.

We discovered that existing Java PBC libraries perform differently in DVM
(a register based virtual machine) as compared to JVM (a stack based virtual
machine). For instance, Jpair (Dong, 2010) scores the highest among others
(De Caro and Iovino, 2011, Tan et al., 2010) in point scalar multiplication
under JVM1 and JVM2 but scores the lowest under DVM. Moreover, THG-
PBC is slower than jPBC in JVM1 and JVM2 but faster in DVM despite the
fact that jPBC uses k-bit Windows method which is theoretically faster. The
results under JVM2 rule out the possibility of processor architecture as both
RaspBerry Pi II and Samsung GT-N7000 use ARM-Cortex processors. The
remaining causes of the inconsistencies may come from many aspects, ranging
from the class structures to the virtual machine architecture.

18 International Journal of Cryptology Research



Ta
bl

e
2:

Ti
m

in
g

(n
s)

of
G

ro
up

O
pe

ra
tio

ns
fo

rJ
av

a
PB

C
L

ib
ra

ri
es

O
pe

ra
tio

ns
JV

M
1

JV
M

2
D

V
M

T
H

G
-

PB
C

jP
B

C
Jp

ai
r

T
H

G
-

PB
C

jP
B

C
Jp

ai
r

T
H

G
-P

B
C

jP
B

C
Jp

ai
r

N
eg

at
io

n
2,

18
3

2,
00

5
5,

90
4

36
,3

52
13

,9
36

33
,8

71
39

,4
30

30
,0

04
65

,5
71

A
dd

iti
on

73
,6

58
63

,5
13

74
,4

77
1,

17
8,

56
2

1,
17

7,
21

8
1,

27
2,

71
7

69
3,

91
5

67
1,

87
4

76
8,

13
4

D
ou

bl
in

g
74

,7
37

63
,0

94
75

,4
67

1,
25

0,
65

7
1,

25
5,

62
8

1,
36

8,
08

3
1,

10
7,

69
1

1,
08

1,
93

1
1,

20
0,

28
7

D&A

A
ffi

ne
15

,3
94

,1
56

-
-

28
2,

09
6,

33
5

-
-

26
9,

32
2,

36
3

-
-

k
-A

ffi
ne

-
13

,1
43

,7
54

-
-

24
3,

57
6,

84
6

-
-

28
2,

80
8,

69
3

-
Ja

co
bi

an
-

-
5,

85
3,

00
7

-
-

17
7,

50
7,

19
1

-
-

52
3,

76
5,

04
7

P.
P

M
ul

t.
-

1,
90

2,
33

5
-

-
34

,9
25

,6
97

-
-

34
,2

46
,1

10
-

Pa
ir

in
g

24
,7

37
,5

96
9,

03
7,

09
3

9,
04

7,
34

4
54

2,
60

2,
14

3
29

1,
23

0,
17

3
28

9,
20

6,
82

3
1,

03
7,

00
3,

19
6

93
0,

93
1,

25
8

89
8,

59
6,

38
8

P.
P.

Pa
ir

in
g

-
4,

42
6,

96
7

-
-

14
3,

93
2,

84
8

-
-

46
6,

37
5,

26
5

-



Syh-Yuan Tan, Chee-Siang Wong & Hoon-Herk Ng

1.2 Contribution

These inconsistencies indicate that the existing Java libraries (De Caro and
Iovino, 2011, Dong, 2010, Tan et al., 2010) are not optimized for Android
platform and inspired us to build an optimized PBC library primarily for An-
droid’s Dalvik Virtual Machine (DVM) with optimizations on Java Virtual Ma-
chine (JVM) come as a by-product. In this paper, we realize an optimized PBC
library in Java, namely, mobile-PBC (mPBC), which outperforms the existing
libraries (De Caro and Iovino, 2011, Dong, 2010, Tan et al., 2010) in Android’s
DVM.

1.3 Organization

The rest of the paper are organized as follows. In Section 2, we briefly dis-
cuss the algorithms of the point operations for pairing based cryptography. In
Section 3, we present the optimization techniques for mPBC in terms of pro-
gramming approach and cryptography approach. In Section 4 we discuss the
benchmark results of mPBC and end the work with a case study in Section 5.

2 PRELIMINARIES

2.1 Point

A point P on elliptic curveE(Fp) under the finite field Fp with prime modulus
p in the affine coordinate (x, y) can be represented in the format of Jacobian
coordinate (x/z2, y/z3, z) to get rid of the calculation on multiplicative in-
verse during point addition and point doubling.

20 International Journal of Cryptology Research



mPBC: An Efficient Pairing-Based Cryptography Library for Android

2.2 Point Scalar Multiplication

THG-PBC uses Double and Add (Tan et al., 2010) while jPBC (De Caro and
Iovino, 2011) and Jpair (Dong, 2010) use Double and Add with k-bit window
as the point scalar multiplication algorithm.

2.2.1 Double and Add Algorithm

THG-PBC (Tan et al., 2010) and jPair (Dong, 2010) use the Double and Add
algorithm as shown in Algorithm 1 as the point scalar multiplication. The
difference between these two libraries is that the former use the algorithm in
Affine coordinate while the latter is in Jacobian coordinate.

Algorithm 1 Double and Add
Require: m, P
Ensure: Q = mP

1: Q← P
2: for all i← (lg(m))− 2 to 0 do
3: Q← 2Q
4: if i is 1 then
5: Q← Q+ P
6: end if
7: end for
8: return Q

2.2.2 Double and Add Algorithm with k-bit Window

jPBC (De Caro and Iovino, 2011) uses an enhanced version of Algorithm 1,
namely, Double and Add with k-bit Window. The parameter k defines the
lookup table size which contains the precomputed points.

International Journal of Cryptology Research 21



Syh-Yuan Tan, Chee-Siang Wong & Hoon-Herk Ng

3 OPTIMIZATION TECHNIQUES

In this section, we examine the possible causes of the bizarre benchmarks and
present the optimization techniques used in producing the mPBC library.

3.1 Global Methods

At the first glance, the performance of Jpair in JVM is benefited from its class
structure which pushes all point operations to the Curve class and yields the
global methods for Point objects. This may indicate that the execution of a
global method is faster than a local method in JVM but the result is conversed
in DVM. However, our quick experiments showed that this hypothesis is not
true. The result showed that global methods work better than local methods
in DVM by approximately 10% but no significant difference in JVM. This
concludes that global variables help in reducing the execution time, but not as
significant as shown in Table 2.

3.2 Point Operations

The optimizations on point operations can be categorized into two main cate-
gories, namely, mathematical enhancements and coding optimizations. For the
latter, we code the library in such a way that global variables will be utilized
whenever it is possible to avoid the creation of local variables; for the former,
we make use of bit operation functions supported in java.math.BigInteger
to replace some simple yet repetitive mathematical operations;

3.2.1 Point Negation

Point negation is a simple point operation that negates the value y under Fp.
The implementations of most of the libraries are −y mod p, but this can be
done more efficiently by calculating p − y. In the programming aspect, the

22 International Journal of Cryptology Research



mPBC: An Efficient Pairing-Based Cryptography Library for Android

point negation function negate(BigInteger p) can be optimized by re-
moving the point validations (i.e. check y < p) because this function is always
called from a valid Point object generated by the Curve object.

3.2.2 Point Addition and Doubling

In mPBC, we optimize the computation through the use of methods from
BigInteger libraries to reduce the execution time in DVM. For example,
we replace equals(BigInteger.ZERO) with signum() method which
is able to check for zero values with reduced time.

For the algorithms which execute point addition and point doubling fre-
quently, we set the temporary variables as static where these variables
will be constructed only once. The reuse of temporary variables will save the
constructions of new variables at each round of point addition and point dou-
bling. Furthermore, the point addition and point doubling were placed under
the Curve class as global methods. Additionally, the multiplication and ex-
ponentiation operation of BigInteger objects are also optimized by using
bitwise operation such as shiftLeft(int n) whenever possible.

3.2.3 Point Scalar Multiplication

It is well known that point operation in Jacobian coordinate is faster than that
of Affine coordinate but inconsistency of benchmark results were identified as
well between Double and Add algorithm with k-bit Window and the original
Double and Add algorithm, i.e., without k-bit Window in Table 1.1. Under
JVM, Jpair’s point multiplication is the fastest followed by jPBC’s and lastly
THG-PBC’s; while in DVM, the sequence is totally reversed. It is obvious
that the number of temporary variables is directly proportional to the speed of
scalar multiplication algorithm in JVM, but inversely proportional to that in
DVM.

In view of this, we modified point addition algorithm in Jacobian coordi-
nate in such a way that the first three BigInteger variables are taken from

International Journal of Cryptology Research 23



Syh-Yuan Tan, Chee-Siang Wong & Hoon-Herk Ng

Algorithm 2 Optimized Point Addition in Jacobian Coordinate

Require: P,Q
Ensure: R = P +Q

1: t1 ← x1z
2
2

2: t2 ← x2z
2
1

3: t3 ← t1 − t2
4: t4 ← y1z

3
2

5: t5 ← y2z
3
1

6: t1 ← t1 + t2
7: t2 ← t4 − t5
8: x3 ← t22 − t1t23
9: y3 ← ((t1t

2
3 − 2x3)t2 − (t4 + t5)t

3
3)/2

10: z3 ← z1z2t3
11: return R = (x3, y3, z3)

the global variables which are shared by all the algorithms in the Curve class
for calculation purposes. Moreover, by manipulating the algorithm steps, we
can reduce four temporary variables from nine to five as shown in Algorithm
2. Therefore, in the implementation, we only need to create two temporary
variables instead of nine as in the original algorithm.

3.2.4 Pre-Processing Point Scalar Multiplication

Pre-processing point multiplication which is only found in jPBC (De Caro and
Iovino, 2011) uses more memory to construct a pre-processing table, on top of
the lookup table of k-bit Window. In mPBC, the pre-processing algorithm used
is similar to that of jPBC with optimization done in the programming aspect as
discussed. The pre-processing algorithm is described as in Algorithm 3 and 4.

Although the pre-processing algorithm gives great speed increments, it
comes with sacrifice in memory to store n× 2k points. In the Type-A curve of
80 bits security, the order is 160 bits, the modulus p is 512 bits in length. At
k = 5, the pre-processing table contains 160/6× 25 = 832 points where each
point costs 1024 bits and the total memory needed is 832×1024 bits= 104KB.
If point compression is used, the pre-processing table still cost 52KB.

24 International Journal of Cryptology Research



mPBC: An Efficient Pairing-Based Cryptography Library for Android

Algorithm 3 Pre-Processing Table Initialization

Require: order, k, P
Ensure: TablePP

1: n← log(order)/(k + 1)
2: Q← P
3: for all i← 0 to n− 1 do
4: TablePP [i][0]← O
5: for all j ← 1 to 2k − 1 do
6: TablePP [i][j]← Q+ TablePP [i][j − 1]
7: end for
8: Q← Q+ TablePP [i][j − 1]
9: end for

10: return TablePP

Algorithm 4 Pre-Processing Point Scalar Multiplication

Require: m,P, k, TablePP

Ensure: Q = mP
1: n← log(m)/(k + 1)
2: Q = O
3: for all i← 0 to n do
4: j ← 0
5: for all s← 0 to k do
6: j ← j | (mki+s × 2s)
7: end for
8: if j > 0 then
9: Q← Q+ TablePP [i][j]

10: end if
11: end for
12: return Q

International Journal of Cryptology Research 25



Syh-Yuan Tan, Chee-Siang Wong & Hoon-Herk Ng

3.3 Bilinear Pairing

The bilinear pairing of mPBC relies on the Type-1 pairing algorithm used by
Jpair (Dong, 2010) is the fastest in DVM compared to the other two. Thus, we
optimize the pairing using the faster point operation algorithms in Section 3.2.

3.3.1 Pre-Processing Bilinear Pairing

Given that the point addition and point doubling were executed in the pre-
processing phase, it does not help in reducing the actual computation time of
the final pairing operation. In mPBC, the pre-processing algorithm used is
similar to that of jPBC with optimization done in the programming aspect as
discussed.

3.4 Class Structure

mPBC consists of seven classes only to keep the library simple, namely, Curve,
CpxBigInteger, Point, JcbPoint, PointMulPreProcessing,
Pairing, PairingPreProcessing. Among all, only JcbPoint in-
herits Point and there is no inheritance relationship among other classes.

We reassert that all optimizations are targeted on the performance in DVM,
while the improvements in JVM come as byproduct.

4 BENCHMARKS

In this section, we show the benchmarks for mPBC in Table 3 with the same
environment as in Section 1.1 where ’J’ represents Jacobian and ’A’ represents
Affine.

26 International Journal of Cryptology Research



mPBC: An Efficient Pairing-Based Cryptography Library for Android

Table 3: Timing (ns) of Group Operations for mPBC.

Operations mPBC
JVM1 JVM2 DVM

Negation 899 13,870 17,811
J-Addition 12,475 479,858 603,285
J-Doubling 12,665 487,670 962,549
A-Addition 64,353 1,215,114 523,073
A-Doubling 63,444 1,248,487 592,711

D
&

A

Affine 15,591,693 283,056,439 310,566,204
k-Affine 13,023,479 242,890,806 268,979,259
Jacobian 5,199,897 169,289,050 443,377,476
k-Jacobian 4,014,078 130,038,010 372,981,140

P.Proc. Mult. 1,937,780 34,740,619 26,003,816
Pairing 8,429,780 299,451,947 809,407,243
P.Proc. Pairing 4,501,117 162,697,997 426,115,736

4.1 Discussion

From Table 3, we can see that the more variables needed, the slower the al-
gorithms execute in DVM. This explain why Jacobian coordinates system per-
forms well in JVM but affine coordinates system performs well in DVM. Un-
like JVM, Android’s DVM uses garbage collector to dispose the unused vari-
ables (And) and the disposal cost is greater than speed-up gained from the gap
of algorithm complexity between Jacobian coordinates and affine coordinates.

Secondly, simple class structure delays lesser than complex class structure
in DVM. Although it is confirmed from Table 3 that Double and Add algorithm
is faster with the presence of k-bit Window in DVM, some may noticed from
Table 2 that THG-PBC uses Double and Add algorithm without k-bit Window
but it is faster than that of jPBC. The cause of this situation is not due to
the algorithm used, but the class structures of the two libraries. THG-PBC
comprises of only four classes without any inheritance or interfaces but jPBC
on the other hand, uses a relatively complex class structures.

Thirdly, the use of global methods can speed up the execution time in

International Journal of Cryptology Research 27



Syh-Yuan Tan, Chee-Siang Wong & Hoon-Herk Ng

DVM. Every point operations in Jpair are the slowest among all but its pairing
operation is still the fastest after mPBC. This is because the multiplication un-
der Fp2 in Jpair is done by the ComplexField object, which provides all the
field operations. So, instead of calling the multiplication method from a new
Fp2 object, DVM calls the same ComplexField object in every round of the
Miller algorithm.

5 CASE STUDY

In this section, we provide a proof of concept for mPBC by implementing
the Identity-Based Signature scheme by Cha and Cheon (2002) (CC-IBS). We
describe CC-IBS scheme as follows:

Setup(1k). Generate an additive group G with prime order q. Choose random
P ∈ G and s ∈ Z∗

q . Let the master public key be mpk = (P, Ppub = sP,H)
and master secret key be msk = s where H : {0, 1}∗ → G.

Extract(mpk,msk, ID). Given a public identity ID, compute user secret key
as D = sQ where Q = H(ID).

Sign(mpk,msk,m). Select a random r ∈ Z∗
q and compute U = rQ. Next,

compute V = (r + h)D where h = H(m,U). The signature σ is a tuple
σ = (U, V ).

Verify(mpk, σ, ID). ComputeQ = H(ID) and accept the signature if e(P, V ) =
e(Ppub, U + hQ) where h = H(m,U); reject otherwise.

Setting ID as “user@gmail.com”, m as random string and k = 5 for
lookup table in window method, we benchmark the CC-IBS scheme in DVM
with the same specification as mentioned in Section 1.1. The results are as
depicted in Table 4.

The Setup and Extract of CC-IBS are the same as that of BLS-IBI (Kuro-
sawa and Heng, 2004) scheme, which was presented in the case study of THG-
PBC (Tan et al., 2010). Without pre-processing, the Setup and Extract from

28 International Journal of Cryptology Research



mPBC: An Efficient Pairing-Based Cryptography Library for Android

Table 4: Timing (ns) of CC-IBS using mPBC in DVM

Algo Without Pre-Processing With Pre-Processing
Setup 764,974,711 1,397,281,960

Extract 399,742,484 2,321,424,874
Sign 239,167,466 42,021,442

Verify 1,286,640,424 1,099,376,141

THG-PBC recorded 1330ms and 229ms respectively which is 50% slower than
that of mPBC. Furthermore, the BLS-IBI scheme of THG-PBC was bench-
marked on a computer with Pentium M 1.73 Ghz processor while CC-IBS was
only benchmarked on an Android smart phone with ARM Cortext-A9 1.4 Ghz
dual core processor.

The results obtained also show the obvious difference between timing of
pre-processing and without pre-processing. The initiations of pre-processing
for pairing lies in the Setup function while the construction of pre-processing
table for point multiplication is located in the Extract function. By doing so, we
pushed the heavy processes to Setup and Extract as well as attaching TablePP

into mpk. The user is left with efficient Sign and Verify but with larger system
parameters. Unless the Android device has very limited memory, we believe
the 52KB-larger mpk is acceptable in practice. Furthermore, the Setup and
Extract algorithms are normally run by server and so the slow processing time
does not affect the usability on Android devices.

Remark 5.1. Although the Sign algorithm from BLS signature (Boneh et al.,
2004) scheme is similar to the Extract algorithm of CC-IBS, we do not compare
the benchmark of CC-IBS to that of the BLS signature in De Caro and Iovino
(2011) and Liu et al. (2014). This is because De Caro and Iovino (2011) did
not provide the benchmark on BLS signature scheme while Liu et al. (2014) is
not a full java library as the core library is still in C language.

ACKNOWLEDGEMENTS

This work is supported by the FRGS grant (FRGS/2/2014/ICT04/MMU/03/1).

International Journal of Cryptology Research 29



Syh-Yuan Tan, Chee-Siang Wong & Hoon-Herk Ng

REFERENCES

Android developers: Performance tips. http://developer.android.
com/training/articles/perf-tips.html.

Boneh, D., Lynn, B., and Shacham, H. (2004). Short signatures from the weil
pairing. Journal of Cryptology, 17(4):297–319.

Cha, J. C. and Cheon, J. H. (2002). Public Key Cryptography — PKC 2003:
6th International Workshop on Practice and Theory in Public Key Cryp-
tography Miami, FL, USA, January 6–8, 2003 Proceedings, chapter An
Identity-Based Signature from Gap Diffie-Hellman Groups, pages 18–30.
Springer Berlin Heidelberg, Berlin, Heidelberg.

De Caro, A. and Iovino, V. (2011). jpbc: Java pairing based cryptography. In
Proceedings of the 16th IEEE Symposium on Computers and Communica-
tions, ISCC 2011, pages 850–855, Kerkyra, Corfu, Greece, June 28 - July 1.
IEEE.

Dong, C. (2010). Jpair: A quick introduction. https://personal.cis.
strath.ac.uk/changyu.dong/jpair/intro.html.

Kurosawa, K. and Heng, S.-H. (2004). Public Key Cryptography – PKC 2004:
7th International Workshop on Theory and Practice in Public Key Cryp-
tography, Singapore, March 1-4, 2004. Proceedings, chapter From Digital
Signature to ID-based Identification/Signature, pages 248–261. Springer
Berlin Heidelberg, Berlin, Heidelberg.

Liu, W., Liu, J., Wu, Q., and Qin, B. (2014). Android pbc: A pairing based
cryptography toolkit for android platform. In Communications Security
Conference (CSC 2014), 2014, pages 1–6.

Lynn, B. (2010). The pairing-based cryptography library. http://crypto.
stanford.edu/pbc/.

Tan, S.-Y., Heng, S.-H., and Goi, B.-M. (2010). Java implementation for
pairing-based cryptosystems. In Computational Science and Its Applica-
tions ICCSA 2010, volume 6019 of Lecture Notes in Computer Science,
pages 188–198. Springer Berlin Heidelberg.

30 International Journal of Cryptology Research

http://developer.android.com/training/articles/perf-tips.html
http://developer.android.com/training/articles/perf-tips.html
https://personal.cis.strath.ac.uk/changyu.dong/jpair/intro.html
https://personal.cis.strath.ac.uk/changyu.dong/jpair/intro.html
http://crypto.stanford.edu/pbc/
http://crypto.stanford.edu/pbc/

	Introduction
	Motivation
	Contribution
	Organization

	Preliminaries
	Point
	Point Scalar Multiplication
	Double and Add Algorithm
	Double and Add Algorithm with k-bit Window


	Optimization Techniques
	Global Methods
	Point Operations
	Point Negation
	Point Addition and Doubling
	Point Scalar Multiplication
	Pre-Processing Point Scalar Multiplication

	Bilinear Pairing
	Pre-Processing Bilinear Pairing

	Class Structure

	Benchmarks
	Discussion

	Case Study

