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ABSTRACT

The security of a modern public key cryptosystem is usually viewed
from their security goal and attack models, with the intention to come
out with a provably secure cryptosystem. In this paper, we propose a
randomized encryption setting algorithm based on the AAβ cryptosys-
tem. We also present provable security elements for the randomized
AAβ cryptosystem with emphasis given to the standard security against
strongest attack model, namely the chosen-ciphertext attack. This ran-
domized AAβ cryptosystem is projected in the random oracle model.

Keywords: AAβ cryptosystem, provable security, chosen ciphertext at-
tack, random oracle model.

1 INTRODUCTION

Basically, a public key cryptosystem is not practical for sending long messages,
but rather is frequently used to transmit a short and temporary key for the use of
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symmetric cryptosystem (Abe et al., 2008). Nevertheless, some cryptographic
protocols such as Secure Electronic Transaction (SET) do not only encrypt
the secret symmetric key but also attaches other information together. For
instance, information on user’s identification or user account authentication
(Hitachi, 2002). As a result, Nishioka et al. (2002) took this as a motivation to
construct a new encryption scheme known as the HIME(R) cryptosystem.

As taken in the report in Hitachi (2002), the plaintext space of the HIME(R)
scheme is large enough to carry the secret encryption key with the attached
data. Henceforth, it is significant to design a public key encryption scheme
that manifests such purposes. So, with the same spirit, a new Rabin-like en-
cryption scheme known as the AAβ cryptosystem was designed that can actu-
ally transmit the information in a single encrypted data set, which its security
based on the hardness for factoring N = p2q (Ariffin et al., 2013). This cryp-
tosystem has proven to have the quality for encrypting and securing large size
data (Asbullah and Ariffin, 2014), however there is no provable security proof
is given.

In proposing a public key cryptosystem, it is conventional to claim that
the public key cryptosystem has the strongest security by showing that it is
secure in the sense of secure against chosen-ciphertext attack (CCA). For in-
stance see Bellare and Rogaway (1995) and Cramer and Shoup (2003). It is
largely agreed upon that security against CCA is one of the most important
attributes of any public key cryptosystem (Müller, 2001). Hence, formalizing
and proving a public key cryptosystem is secure under CCA is of very im-
portant. Therefore, throughout this paper, we will give the desired provable
security proof upon the AAβ cryptosystem. We consider the security goal un-
der CCA in the random oracle setting.

The paper is organized as follows. Section 2 reviews the AAβ cryptosys-
tem and provide several definitions related to the study. In section 3, we de-
scribe our proposed randomized AAβ scheme and accompany it with the se-
curity proof in section 4. The conclusion appears in the final section.
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2 PRELIMINARIES

In this section, we begin with a description of the AAβ cryptosystem, which
is proposed earlier by Ariffin et al. (2013). Then, we provide all the neces-
sary definitions that particularly used in this paper. We then further with the
definition of chosen ciphertext attack (CCA).

2.1 AAβ Cryptosystem

In this section, we review the AAβ cryptosystem. We begin by describing the
key generation, encryption and decryption procedure of AAβ cryptosystem as
follows.

Algorithm 1 AAβ Key Generation Algorithm

Input: The size k of the security parameter
Output: The public key A1, A2 and the private key d, p

1: Choose two random and distinct primes p and q such that 2k < p, q <
2k+1 satisfy p, q ≡ 3 (mod 4)

2: Compute A2 = p2q
3: Compute a random integer A1 such that 23k+4 < A1 < 23k+6

4: Compute an integer d such that A1d ≡ 1 (mod A2)
5: Return the public key A1, A2 and the private key d, p, q

Algorithm 2 AAβ Encryption Algorithm

Input: The plaintext m, t and the public key A1, A2

Output: A ciphertext c
1: Choose a plaintext 22k−2 < m < 22k−1 such that gcd(m,A2) = 1
2: Choose a plaintext t such that 24k < t < 24k+1

3: Compute c = A1m
2 +A2t

4: Return the ciphertext c
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Algorithm 3 AAβ Decryption Algorithm

Input: A ciphertext c and the private key d, p, q
Output: The plaintext m, t

1: Compute w ≡ cd (mod A2)

2: Compute mp ≡ w
p+1
4 (mod p)

3: Compute mq ≡ w
q+1
4 (mod q)

4: Compute j ≡ p−1 (mod q)
5: Compute h1 ≡ (mq −mp)j (mod q)
6: Compute h2 ≡ (−mq −mp)j (mod q)
7: Compute m1 = mp + h1p
8: Compute m2 = mp + h2p
9: Compute m3 = pq −m2

10: Compute m4 = pq −m1

11: Compute ti =
c−A1m2

i
A2

for mi < 22k−1 for i = 1, 2, 3, 4
12: Sort the pair (mi, ti) for integer ti, else reject
13: Return the plaintext m, t

2.2 Useful Definitions

Definition 2.1. (Cryptographic Hard Problem). A cryptographic hard problem
is defined as a function that can be computed easily, however very hard to find
the inverse.

Definition 2.2. (Negligible Function). For every polynomial f(·), if there ex-
ists an N > 0 such that for all integers n > N it holds that ε(n) < 1

f(n) , then
such ε(n) is called as a negligible function.

Definition 2.3. (AAβ Function). Let k be the security parameter. Choose two
random and distinct primes p, q ≡ 3 (mod 4) where 2k < p, q < 2k+1. Let
A2 = p2q and choose a random A1 ∈ Z+

(23k+4,23k+6)
such that gcd(A1, A2) =

1. Let m2 ∈ Z+
(22k−2,22k−1)

and t ∈ Z+
(24k,24k+1)

. Suppose (A1, A2) be the
public parameters and (m, t) be private parameters. Let

c = A1m
2 +A2t (1)

We define (1) as the AAβ function.
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Definition 2.4. (AAβ Function Hard Problem). Let the AAβ Function Hard
Problem is defined as the problem to find (m, t) from c such that c = A1m

2 +
A2t where the parameter m, t,A1, A2 are as described by Definition 2.3. Sup-
pose [A(AAβ) = 1] is an event of a probabilistic polynomial time algorithm A
that given (A1, A2) and c = A1m

2 +A2t is successfully obtained (m, t), oth-
erwise [A(AAβ) = 0]. We say that the AAβ Function Hard Problem is hard,
if for all probabilistic polynomial time algorithm A there exists a negligible
function ε such that

Pr[A(AAβ) = 1] ≤ ε

Definition 2.5. (Random Oracle Model). A random oracle is a functionH(· ) :
{0, 1}n −→ {0, 1}n that maps an input value to a true random output value.

2.3 Chosen Ciphertext Attack

Throughout this paper, we consider the notions of security against the chosen
ciphertext attack as our security goal.

Definition 2.6. (CCA Game). Suppose Π be a public key encryption scheme
and Λ be a polynomial time adversary that attempts to break such scheme. We
describe the CCA via the following game played between Π and Λ.

1. Π generate (e, d) and e is given to the adversary Λ.

2. Λ is allowed to make decryption queries for any ciphertext of his choice
to Π, which decrypts the given ciphertexts.

3. Λ will output two messages m0 and m1 and send these messages to
Π. During this stage, Π chooses r ∈ {0, 1} at random and sets c =
E(e,mr) as the challenge ciphertext.

4. Λ is allowed to continue the decryption queries for any ciphertext c∗ 6= c
to Π.

5. Λ outputs the value of r′ and wins the game if r′ = r.

International Journal of Cryptology Research 5
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The goal of the adversary Λ is to answer whether the challenge ciphertext
c is the encryption of m0 or m1. The scheme which denoted by Π is said to
be adaptive chosen ciphertext secure if for all efficient polynomial time ad-
versaries Λ, the probability of such adversary are winning the CCA game is
not greater than 1

2 , which means to show that the adversary Λ cannot acquire
any useful information about a message from its ciphertext. We now formally
defined the CCA-secure for public key encryption scheme as the following
definition.

Definition 2.7. Let CCAΛ
Π be an event of a public key encryption scheme Π

and a polynomial time adversary Λ playing the CCA game as described in
Definition 2.6. Let [CCAΛ

Π = 1] is the event for Λ winning the CCA game
over Π, otherwise [CCAΛ

Π = 0]. Then a public key encryption Π is considered
has the CCA-security if for all probabilistic polynomial-time adversaries Λ
there exists a negligible function ε such that

Pr[CCAΛ
Π = 1] ≤ 1

2
+ ε

3 RANDOMIZED AAβ CRYPTOSYSTEM

We retain the same procedure for the AAβ key generation as described in Al-
gorithm 1 and output the public keys A1, A2 and the private keys d, p, q.

Remark 3.1. Suppose we have a random oracle G(·) : |m2| 7→ |v| such that
m ∈ Z+

(22k−2,22k−1)
and v ∈ Z+

(24k,24k+1)
. We then start the encryption as

follows.

Remark 3.2. In the randomized AAβ encryption setting, the random integer
m is not part of the plaintext (or any intended information) but instead it only
acts as an ephemeral value.
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Algorithm 4 Randomized AAβ Encryption Algorithm

Input: The value m2, t and the public keys A1, A2

Output: A ciphertext c
1: Choose a random integer m ∈ Z+

(22k−2,22k−1)

2: Compute m2

3: Query u = G(m2) from the random oracle
4: Choose a plaintext v ∈ Z+

(24k,24k+1)

5: Compute t = v ⊕ u
6: Compute c = A1m

2 +A2t
7: Return the ciphertext c

Remark 3.3. After receiving the ciphertext c, we first decrypt c as mentioned
in Algorithm 3 in order to obtain the integer m, with additional operation as
follows.

Algorithm 5 Randomized AAβ Decryption Algorithm

Input: A ciphertext c and the private key d, p
Output: The message v

1: Decrypt c as Algorithm 3, and obtain m and t
2: Compute m2

3: Query u = G(m2) from the random oracle
4: Compute v = t⊕ u
5: Return the message v

4 SECURITY PROOF FOR THE RANDOMIZED
AAβ CRYPTOSYSTEM

Theorem 4.1. The randomized AAβ cryptosystem is secure against CCA, if
the AAβ function is hard and G(·) is modeled as a random oracle.

Proof sketch. Suppose G(·) is modeled as a random oracle such that
G(m2) : |m2| 7→ |v|. Then we will follow the argument that to distinguish
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between the case that the adversary does not query m2 to the random oracle
G(·) and the case of when it does. Note that the construction of the randomized
AAβ cryptosystem does not involve any symmetric key cryptosystem.

Observe that, in the first case, the adversary learns nothing about the key
m2. Hence we can say that the success probability of such adversary to break
the randomized AAβ cryptosystem is no better than to the success probability
of a random guessing, which is exactly 1

2 . For the latter case, the probability
that the adversary is able to query m2 to the random function G(·) is negligi-
ble if the AAβ function is hard. Once again, in order to prove Theorem 4.1,
we need to show simulation (i.e a reduction algorithm) for the query to the
decryption oracle and the query to the random oracle G(·), which made by the
adversary.

Proof. (Full proof) Let the randomized AAβ cryptosystem be described as
in Section 3 denoted as Υ. Let Λ be a probabilistic polynomial-time adversary
that succeeds in breaking such Υ with non-negligible probability. First of all,
we should describe the scenario of the actual CCA game that’s being played
between Λ and the Υ as follows.

1. Υ publish the public keys A1 and A2 to Λ.

2. Λ has given the ability to make queries to the random function G(·) for
certain values, and to make decryption queries for any ciphertext of his
choice to Υ.

3. Λ output two messages v0 and v1 such that v0, v1 ∈ Z+
(24k,24k+1)

and
send it to Υ.

4. Υ choose the integer m̊ ∈ (22n−2, 22n−1) and choose r ∈ {0, 1} at
random

5. Υ query for the value ů = G(m̊2) and compute t̊ = vr ⊕G(m̊2)

6. Sets c̊ = A1m̊
2 +A2̊t as the challenge ciphertext.

7. Λ is still allowed to make queries to the random function G(·) and to
ask for decryption of any ciphertext, except for the challenge ciphertext
c̊ itself.
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8. Λ output a value of r′ and wins the game if r′ = r.

Let Q(m̊2) denote the event that Λ successfully queries the correct m̊2 to
the random oracle G(·) occurs. We also use Win as a notation of the event Λ
correctly outputs r′ = r. Then,

Pr[Win] = Pr[Win ∧Q(m̊2)] + Pr[Win ∧Q(m̊2)]

≤ Pr[Win ∧Q(m̊2)] + Pr[Q(m̊2)]

where all probabilities are taken over the randomness used in the CCA game.
�

We are now proceed to show that it is indeed Pr[Win ∧ Q(m̊2)] ≤ 1
2 and

there exists a negligible function ε such that Pr[Q(m̊2)] ≤ ε. Consider the
following lemma.

Lemma 4.1. If the AAβ function is hard and G(·) is modeled as random ora-
cle, then Pr[Win ∧Q(m̊2)] ≤ 1

2 and Pr[Q(m̊2)] ≤ ε.

Proof. We first proof the first assertion. Suppose Pr[Win ∧ Q(m̊2)] means
that the adversary correctly outputs r′ = r without making any query to the
random oracle G(·). Therefore, in the first statement, the adversary learns
nothing about the value of m̊2. Then we can reduce the success probability is
similar to the event of random guessing, hence

Pr[Win ∧Q(m̊2)] ≤
1

2

Now, we further to prove the second assertion, as follows. Suppose we are
given a AAβ function hard problem as follows. Suppose we are provided with
c̊ suct that c̊ = A1m̊

2 +A2̊t and are given the known parameters A1, A2. The
task is to determine the exact integer m̊2 and t̊. If Pr[Q(m̊2)] is not negligible,
then we can manipulate the adversary Λ as a subroutine in order to answer the
given a AAβ function hard problem.

Observe the following; suppose Λ is given the public keys A1, A2 and a
ciphertext c from Υ during the execution of the CCA game. Then we watch
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over all the queries made to the random oracle G(·) by Λ. Suppose [A(AAβ) =
1] is an event as in Definition 2.4. If the event Q(m̊2) is taking place, then one
of the queries m̊2 to the random oracle satisfies c̊, therefore Pr[Q(m̊2)] has the
same probability as Pr[A(AAβ) = 1]. Hence, by definition we should have
Pr[Q(m̊2)] ≤ ε.

Formally, we need to set a reduction algorithm, denoted as ∆′R that solve
the AAβ function hard problem. This reduction algorithm ∆′R should have
the ability to respond to both; the decryption queries and the random oracle
queries, as the same as Υ, however without the prior knowledge of the de-
cryption key d and p. Once again, the usefulness of the ROM methodology
allowed for such response to be made.

Suppose the reduction algorithm ∆′R is given A1, A2 and c̊ as the input.
The objective is for ∆′R to output the value of m̊2 and t̊. Initially ∆′R will
prepare a table that contains a tuple of (·, ·, ·, ·, ·) with each ’·’ indicates that its
corresponding c,m2, u, t and v, respectively. Note that the value of m2 and v
are unknown at the moment, so does for u = G(m2).

Remark 4.1. When Λ make a decryption query for a ciphertext c, then ∆′R
will look up through the table and search if there is a tuple that contains c as
its initial entry.

1. If the value c is found from the table (in the form of (c,m2, u, t, v)), then
∆′R will return the decryption result v to Λ.

2. Otherwise, if the value c is nowhere to be found in the table, then ∆′R will
store c, generate u and t at random. It then compute m2 = c−A2t

A1
and

set v = t⊕u. Thus, the table is refreshed with new entry (c,m2, u, t, v).
Hence ∆′R will return v as the result of the decryption query to Λ.

Remark 4.2. When Λ make a random oracle query for a value m2, then ∆′R
will search through all the entries in the table and search if there is a tuple that
contains m2.

1. If there is an entry that containm2 (i.e. in the form (c,m2, u, t, v)), then
∆′R will return the value u to Λ
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2. If there is an entry that contain m2 (i.e. in the form (·,m2, u, ·, ·)), then
∆′R will return the value u to Λ

3. If the query value m2 is nowhere be found in the table, then ∆′R will
generate u at random, then ∆′R store the query value m2 and the newly
generated u into the table as the tuple (·,m2, u, ·, ·) and return u in
response

Let the reduction algorithm ∆′R be given A1, A2 and c̊ as inputs, of which
the objective is to output its corresponding m̊ and t̊. Hence, we begin the
simulation of the CCA game between the reduction algorithm ∆′R and the
adversary Λ as follows.

Simulation of the CCA game between ∆′R and Λ

1. ∆′R is given A1, A2 and c̊ as an instance from AAβ function hard prob-
lem

2. ∆′R send the A1, A2 as its public keys to Λ

3. Λ make a decryption query for any of its chosen value c

At this point, ∆′R must be able to answer any queries of Λ on the value
of cwhen is needed. Suppose Λ submit its decryption query on the value
of c, then ∆′R will respond to the value v as follows.

i. If such c is from an entry (c,m2, u, t, v), then return the decryp-
tion result v to Λ

ii. Otherwise, ∆′R will store the query value c and then generate u
and t at random. It then compute m2 = c−A2t

A1
and set v = t⊕ u. Thus,

∆′R will return v as the result of the decryption query to Λ store all the
newly entries into the table

4. Λ make a random oracle query for any of its chosen value m2

At this point, ∆′R must be able to answer any queries of Λ on the value
of m2 when is needed. Suppose Λ submit its query on the value of m2

to the random oracle, then ∆′R will respond with the value u as follows.

i. If there exists an entry m2 of the form (c,m2, u, t, v) in the table,
then return u to Λ
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ii. If there exists an entry m2 of the form (·,m2, u, ·, ·) in the table,
then return u to Λ

iii. Otherwise, if the query value m2 is nowhere be found in the
table, then ∆′R will generate u at random, then ∆′R store the query value
m2 and the newly generated u into the table as the tuple (·,m2, u, ·, ·)
and return u in response

5. At some point, Λ output two messages v0 and v1

6. ∆′R choose r ∈ {0, 1} at random

7. ∆′R set c̊ as the challenge ciphertext

At this point, ∆′R send c̊ as the challenge ciphertext to Λ.

8. ∆′R continues to answer the decryption queries and the random oracle
queries from Λ as before

9. Suppose Λ query for m̊2 the random oracle

At this point ∆′R compute t = c̊−A1m̊2

A2

i. If t = c̊−A1m̊2

A2
∈ Z, then set t̊ = t. Return ů = t̊⊕ vr to Λ

ii. Otherwise, return to Step 4.

10. At the end of the CCA game, Λ will output it guesses r′

11. ∆′R output m̊2 and t̊.

The CCA game ends upon ∆′R output m̊ and t̊. It is immediate that the
reduction is done by ∆′R runs in polynomial time. We notice that every given
input during the CCA game played between ∆′R and Λ is distributed uniformly
as in the actual CCA game played between Υ and Λ. Thus, the view of Λ of
either in the actual CCA game with Υ or being used as subroutine by the ∆′R
in this reduction is indistinguishable.

Let Q(m̊2) denote the event that Λ successfully queries the correct m̊2 to
the random oracle occurs. Let [A(AAβ) = 1] as define in the Definition 2.4. We
say that the reduction algorithm ∆′R solve the instance c̊ of the AAβ function
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hard problem whenever the event Q(m̊2) happens. Since the Pr[A(AAβ) = 1]
is negligible, then we obtain

Pr[Q(m̊2)] = Pr[A(AAβ) = 1] ≤ ε

The proof is now complete. �

5 CONCLUSION

In this work, we design an efficient and provably secure cryptosystem which
is proven to resilient to the stronger adversarial model, namely the chosen
ciphertext attack. The design is done by randomized setting implemented to
the original AAβ cryptosystem from its deterministic form that is proposed
earlier in Ariffin et al. (2013). This randomized AAβ cryptosystem is also
shown to be secure against chosen ciphertext attack and is projected in the
random oracle model.
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