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ABSTRACT 

A special group based on a linear recurrence equation plays an important role in 
modern cryptography.  Its relation appeared differently in various cryptosystem. 
Some cryptosystems that use this linear recurrence property are LUC, LUCDIF, and 
LUCELG but the first practical Lucas function in a cryptosystem is LUC, presented 
by Peter Smith and Michael Lennon in 1993. Cramer-Shoup is a practical public key 
cryptosystem provably secure against adaptive chosen ciphertext attack that requires 
a universal one-way hash function. Based on LUCELG and Cramer-Shoup 
cryptosystems, a new public key cryptosystem is developed by generating the key 

generation, encryption and decryption algorithm. There are two types of security for 
the new cryptosystem that we are concerned which are the security of Lucas function 
and its security against an adaptive chosen ciphertext attack. Since the encryption and 
decryption algorithm of a new cryptosystem is based on the defined Lucas function, it 
is believed that the security of Lucas function is polynomial-time equivalent to the 
generalized discrete logarithm problems. Moreover, the new cryptosystem is secure 
against adaptive chosen ciphertext attack by assuming that the hash function is 
chosen from a universal one-way family and the Diffie-Hellman decision problem is 

hard in the finite field 

 
Keywords: Lucas Function, Public Key Cryptosystem, discrete log problem, adaptive 
chosen ciphertext attack, hash function. 

 

 

INTRODUCTION 

The ciphers based on the discrete logarithm problem can be 

implemented using Lucas functions instead of exponentiation. For example, 
LUC is a public key cryptosystem developed by a group of researchers in 

Australia and New Zealand (Smith and Lennon, 1993). The Lucas function 

is a special form of second order linear recurrence relations using a large 
public integer as modulus (Laih et al., 1994).The cipher implements the 

analogs of the ElGamal, the Diffie-Hellman key agreement protocol (Diffie 

and Hellman, 1976), and the RSA system (Rivest et al., 1978) over Lucas 

sequences (Lucas, 1878). In ElGamal cryptosystem, proposed by Elgamal 



Norliana Muslim & Mohamad Rushdan Md. Said
 

 

192                                  International Journal of Cryptology Research 

 

(1985), the security relies on the difficulty of computing discrete logarithms. 

Based on the same difficult mathematical problem as ElGamal, LUCELG 

uses the calculation of Lucas functions instead of discrete logarithms.  

 
In 1998, Ronald Cramer and Victor Shoup extended ElGamal scheme 

and developed Cramer-Shoup cryptosystem (Cramer and Shoup, 1998). The 

scheme and its variants are quite practical and are proved secure against 
adaptive chosen ciphertext attack under standard intractability assumptions. 

 

In this present paper, we propose a new variation of LUCELG and 
Cramer-Shoup cryptosystem by showing the key generation, encryption and 

decryption process. We will continue by discussing the security of the new 

scheme. 

 
 

LUCELG CRYPTOSYSTEM 

In 1994, Smith (1994), the following cryptographic application of 
Lucas function an analogue to ElGamal cryptosystem was proposed. The 

receiver chooses a prime p and the initial values P , and 1Q =  which are 

publicized, chosen such that 2 4P Q−  mod p is a quadratic non-residue, and 

such that 
( ) ( )1 /

, 2
tp

V P Q
+

≠  mod p , for all 1t > dividing ( )1p +  . Let say 

Alice sends message to Bob, so Bob (receiver) must choose the private key 

x, and publish the public key ( ), mod
x

y V P Q p≡ . 

 

A message m is an integer satisfying 1 1m p≤ ≤ − . To encrypt a 

message, Alice needs to choose a secret number k, which is an integer 

satisfying 1 1k p≤ ≤ − , calculates ( ) ( )1, mod , , mod
k k

G V y O p e V P Q p≡ ≡  

and  2 mode Gm p≡ . The encrypted message is the pair ( )1 2,e e . 

 

To decrypt the message, Bob needs to compute 

( ) ( )( ) ( )1, , , , mod
k

x x k kxV e Q V V P Q O V P Q G p≡ ≡ ≡ and the inverse of G. 

Then Bob can find the message m, because 1

2 modm e G p−≡ . 

 

It is very important that Q is chosen so that 1modQ p≡ ; the 

recipient needs to know modkQ p for the secret value k in order to compute 
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( ),
kx

V P Q  from ( ),
k

V P Q using ( ) ( )( ), , ,
k

kx k xV P Q V V P Q Q= . This problem 

can be solved by taking 1modQ p≡ .  

 

Let   21
4

2
P P Qα  = + −
 

, and 2 4P Q∆ = − ; Legendre symbol 

( )/ 1p∆ = − , then 
2

/ P p
O F∆ ∈ ,the finite field of 2p element, via an 

isomorphism that we denote by ϕp. The condition  ( )/ 1p∆ = − is to make 

sure that one is working in the finite field 2

P
F rather than F . 

 

 

CRAMER-SHOUP CRYPTOSYSTEM 

According to Cramer and Shoup (1998), we assume that we have a 

group G of prime order q, the plaintext are elements of G and use a universal 
one-way family of hash functions that map long bit strings to elements of 

q
Z . 

 

The receiver, Bob pick 1 2,g g G∈ , 1 2 1 2, , , ,
q

x x y y z Z∈  and compute 

1 2

1 2

x x
c g g= , 1 2

1 2 1,  
y y zd g g h g= = . Next, a hash function H is chosen from 

the family of universal one-way hash functions. The public key is 

1 2( , , , , , )g g c d h H and the private key is 1 2 1 2( , , , , )x x y y z . 

 

Alice as the sender, chooses 
q

k Z∈  and calculates 1 1 2 2,k ku g u g= = , 

ke h m= , 1 2( , , )H u u eα =  and k kv c d α= . The ciphertext is ( )1 2, , ,u u e v . 

 

Before recover the message, Bob computes 1 2( , , )H u u eα = , and tests 

if  1 1 2 2

1 2

x y x y
u u v

α α+ +
= . If this condition does not hold, the decryption output is 

‘reject’; otherwise, it outputs 
1

z
em

u
= . 

 

We first verify that this is an encryption scheme, in the sense that the 

decryption of an encryption of a message yields the message. Since 

1 1

ku g= and 
2 2

ku g= , we have 1 2 1 2

1 2 1 2

x x kx kx ku u g g c= = . Likewise, 
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1 2

1 2

y y ku u d= and 
1

z ku h= . Therefore, the test performed by the decryption 

algorithm will pass, and the output will be k
e m

h
= . 

 

 

A NEW CRYPTOSYSTEM ANALOGOUS TO LUCELG AND 

CRAMER-SHOUP 

A new public key cryptosystem using the combination of LUCELG 
and Cramer-Shoup is proposed as follows.  

 

The receiver chooses a prime p, the initial values
1 2
,  and 1P P Q = . Let 

say Alice is the sender and Bob is the receiver, so Bob must choose the 

private key 21 2 1 2
( , , , , )

p
x x y y z F

∗
∈ and compute 

1 21 2
( ,1) ( ,1) mod ,

x x
c V P V P p≡ ⋅  

1 21 2
( ,1) ( ,1) mod

y y
d V P V P p≡ ⋅  and 

1
( ,1)mod

z
h V P p≡ . Here, Bob’s public 

key is 21 2
( , , , , , )

p
P P c d h F

∗
 and his secret key is 

1 2 1 2
( , , , , )x x y y z . 

 

To encrypt a message, Alice must represent her message m as an 

integer such that 1 1m p≤ ≤ − , choose a secret k such that 1 1k p≤ ≤ −  and 

calculates 

  

 

1 1 2 2

1

1 2

( ,1) mod ,  ( ,1) mod ,

( ,1)mod ( ( ,1),1) mod ,  mod ,

( , , ),  ( ,1) ( ,1)mod

k k

k k z

k k

u V P p u V P p

G V h p V V P p e Gm p

H u u e v V c V d pαα

≡ ≡

≡ ≡ ≡

≡ ≡ ⋅

 

 

Then, Alice sends the ciphertext 1 2( , , , )u u e v to Bob. 

 
To decrypt the message, Bob use his private key to compute  

 
1 1

1

1

mod mod
( ,1) ( ,1)

( ( ,1),1)
  mod

( ( ,1),1)

z z

k z

z k

e Gm
m p p

V u V u

V V P
m p

V V P

≡ ≡

≡ ⋅
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Example of the New Cryptosystem 

Suppose that Bob choose a prime 1 27, 2, 3, 1p P P Q= = = = and secret key 

27
(2,3,3,2,3) F

∗
∈ . Later, he calculates  

 

 

1 21 2

2 3

( ,1) ( ,1) mod

 (2,1) (3,1) mod 7

 2 4 mod  7 1 mod  7

x x
c V P V P p

V V

≡ ⋅

≡ ⋅

≡ ⋅ ≡

  

 

1 21 2

3 2

( ,1) ( ,1) mod

  (2,1) (3,1) mod7

  2 7 mod 7 0 mod 7

y y
d V P V P p

V V

≡ ⋅

≡ ⋅

≡ ⋅ ≡

 

 

 

1

3

( ,1)mod

 (2,1) mod 7

 2mod7

z
h V P p

V

≡

≡

≡

 

 

Bob’s public key is 27
(2,3,1,0,2, )F

∗
 and his private key is (2,3,3,2,3) . 

Let say Alice want to encrypt her message 5m = and she choose a secret 

2k = . Then she computes  

 

 

1 1

2

( ,1)mod

   (2,1)mod 7

   2mod7

ku V P p

V

≡

≡

≡

  

2 2

2

( ,1)mod

   (3,1)mod7

   0mod 7

ku V P p

V

≡

≡

≡

 

 

 2

( ,1)mod

   (2,1)mod 7

   2mod7

kG V h p

V

≡

≡

≡

    

mod

 2 5mod 7

 3mod 7

e Gm p≡

≡ ⋅

≡

 

  

1 2( , , ) 2H u u eα ≡ ≡   2 4

( ,1) ( ,1)mod

 (1,1) (0,1)mod 7

 6 2 mod 7 5mod7

k kv V c V d p

V V

α≡ ⋅

≡ ⋅

≡ ⋅ ≡

 

 

Alice sends her ciphertext (2,0,3,5)  to Bob. 
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To recover the message, Bob use his private key to compute  
 

1 1

1 3

1

( ,1) mod 3 (2,1) mod 7

  3 2 mod7 3 4 mod 7 5mod 7

z
m e V u p V

− −

−

≡ ⋅ ≡ ⋅

≡ ⋅ ≡ ⋅ ≡
 

 

 

THE SECURITY OF LUCAS FUNCTIONS 

The Lucas function is a second order linear recurrence relation which 
has the form   

1 2( ) ( ) ( )
n n n

V m mV m V m− −= − , 2n ≥  

with an initial value 0 ( ) 2V m = , 1( )V m m=  where m is an element of 

multiplicative group of prime number, 2
p

F
∗

. 

 

The single Lucas problem 

Let 2
p

m F
∗

∈ and z as the Lucas sequence generated by m. The single Lucas 

problem is based on finding an integer x such that ( )
x

V m z= . 

 

The double Lucas problem 

Let 21 2,
p

m m F
∗

∈ and z as the Lucas sequence generated by 1m and 2m . The 

double Lucas problem is based on determining the integers 1x and 2x  such 

that
1 21 2( ) ( )

x x
V m V m z⋅ = . 

 

All of the Lucas functions and its problem can be seen as a generalization of 

the exponentiation function but the relationship are not really known. In 

addition, Laih, Tu and Tai have proposed a theorem by saying; if an 
algorithm can be used to solve the Lucas problem then it can be used to 

solve the discrete logarithm problem in polynomial time and also the reverse 

way (Laih et al., 1995). We proposed the following lemmas and theorems to 
show that the security of Lucas function is polynomial-time equivalent to the 

generalized discrete logarithm problems. 
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Lemma 1. If 
*

,
p

g m F∈  and xy g= , then a Lucas sequence ( )
t

V m  can be 

construct such that 
1

( ) ( )
x t

y y V m V m
−

+ = ∈  in polynomial time. 

Proof: By letting 1m g g −= + , it is clear that 
*

p
m F∈ . Hence, a polynomial 

2( ) 1f x x mx= − +  can be construct with g and 1g−  are the two zeroes of  f 

(x) in 
*

p
F . Now we let ( )

t
V m  be the Lucas sequence generated by m whose 

characteristic polynomial is f (x). Then, ( )1
( )

t
t

tV m g g
−

= + . Since xy g= , it 

yields 
1

( ) ( )
x x

x t
y y g g V m V m

− −
+ = + = ∈ . □ 

 

Lemma 2. If 
*

p
m F∈ , ( )

t
V m  is the Lucas sequence generated by m and 

( ) ( )
x t

z V m V m= ∈  for some integer x, then we can find two elements g and 

y in 
*

p
F  such that 1( )

x
z V m y y−= = +  and xy g=  in polynomial time. 

 

Proof: Let  ( )
t

V z  be the Lucas sequence generated by z. Then the 

characteristic polynomial of ( )
t

V m  is ' 2( ) 1.f x x zx= − +  Thus, we can 

find a root y of ' ( ) 0f x =  in polynomial time, where y is in 
*

p
F  or 2

*

p
F  

which depend upon whether 
2 4

1
z

p

 −
= 

 
 or not. If y is a root of ' ( ) 0f x = , 

then 1y y z−+ = . Like wise, there is an element g in 
*

p
F  or 2

*

p
F  in 

polynomial time such that g is a root of characteristic polynomial 
2( ) 1f x x mx= − +  for the Lucas sequence ( )

t
V m . Since 

( ) ( )
x t

z V m V m= ∈ , it gives x xz g g −= + . Combining these two equations 

of z yields, 1x xz g g y y− −= + = + .  

 

Theorem 1. If an algorithm A can be used to solve the Lucas problem over 
*

p
F , then A can be used to solve the discrete logarithm problem over 

*

p
F  in 

polynomial time. 

 

Proof: We need to prove that for any given 
*

,
p

g y F∈  with xy g=  for some 

unknown integer x, an algorithm A can produce x as an output in polynomial 

time. 
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By using lemma 1, we can find 
*

p
m F∈  and construct the Lucas sequence 

( )
t

V m  such that 
1

( ) ( )
x t

y y V m V m
−

+ = ∈  in polynomial time. Since 

algorithm A can be used to solve the Lucas problem, it is also can be use to 

produce the output x such that ( )1 1
( )

x
x

xV m y y g g
− −

= + = + . □  

 

Theorem 2. If an algorithm 
'

A can be used to solve the discrete logarithm 

problem over 
*

p
F  or 2

*

p
F , for any 

*

p
m F∈  and ( )

t
z V m∈ , then algorithm 

'
A  can be used to produce an integer x such that ( )

x
V m z=  over 

*

p
F  in 

polynomial time. 

Proof: By using lemma 2, we can find g and y in 
*

p
F  or 2

*

p
F  for given 

*

p
m F∈ and ( )

t
z V m∈  in polynomial time depend upon whether 

2 24 4
1

z m

p p

   − −
= =   

   
 or not such that 1m g g −= +  and 

( )1 1
x

x
z y y g g

− −
= + = + . If g and y are the input of the algorithm 

'
A , then 

we can obtain output x such that xy g= . Therefore, x is the solution of 

( )
x

V m z= . □ 

 
From Theorem 1 and Theorem 2, we conclude that the security of Lucas 

function is polynomial-time equivalent to the generalized discrete logarithm 

problems. 
 

 

THE SECURITY AGAINST ADAPTIVE CHOSEN 

CIPHERTEXT ATTACK 

 

This security was first defined by Rackoff and Simon (1991). In 
adaptive chosen ciphertext attack, an attacker Eve plays the following game 

with Alice. First, Alice generates a key with a security parameter as input. 

Next, Eve makes arbitrary calls to a decryption oracle, providing her own 

ciphertext and receiving their decryptions. Eve continues by selecting 0m or 

1m from Alice’s messages and sends these to an encryption oracle. The 

encryption oracle will reply by choosing randomly a bit { }0,1b ∈ and 



A New Cryptosystem Analogous To Lucelg And Cramer-Shoup 

 
 

International Journal of Cryptology Research                                              199 

 

encrypts
b

m . Later, Eve again makes calls to the decryption oracle, subject 

only to the restriction that she may not submit Alice’s ciphertext to the 

oracle verbatim. Finally, Eve outputs { }' 0,1b ∈ will be her guess of value b. 

Eve’s advantage is determined to be ε where the probability of her selecting 

correctly which means 
'b b=  is 1

2
ε+ . 

 

The cryptosystem is said to be secure against adaptive chosen 
ciphertext attack if no polynomial time algorithm can play these game with 

advantage a non-negligible function.  To prove this, we need to build a 

simulation that takes as input a quadruple 
1 2 1 2

( , , , )P P u u  coming from either 

distribution R or D. Those mean either 
1 2 1 2

( , ) ( ( ,1), ( ,1))
k k

u u V P V P= for some 

k or 1 2,u u are random elements in 2
p

F ∗
. The simulation will use this input to 

role the part of Alice described in the definition of adaptive chosen 
ciphertext attack. The key generation and an encryption of one of two 

messages will be done by the simulation. Eve will have access to a working 

decryption oracle. We must show that if the input comes from the 
distribution D, the simulation is distinguishable from an actual attack. 

Whenever Eve can correctly distinguish ciphertext, it will succeed in the 

simulation with the same probability as it would in actual attack.  

 
If the input comes from the distribution R then the encrypted message 

will be perfectly hidden and Eve will not be able to distinguish one 

ciphertext from another. We will have produced an algorithm that can solve 
the Diffie-Hellman decision problem with non-negligible problem by 

declaring that the input came from distribution D if Eve guesses correctly 

and R if it does not. If there is no such algorithm exists to break the Diffie-
Hellman problem then no algorithm exists to break the new cryptosystem 

under adaptive chosen ciphertext attack with non-negligible probability. 

 

Theorem 3. The new cryptosystem is secure against adaptive chosen 
ciphertext attack assuming that: 

 

(1) the hash function H is chosen from a universal one-way family 
(2) the Diffie-Hellman decision problem is hard in the group G. 

 

Proof: The simulator takes as input
1 2 1 2

( , , , )P P u u . Later, it will play the part 

of Alice by running the key generation of 21 2 1 2 1 2
( , , , , , )

p
x x y y z z F

∗
∈ , 



Norliana Muslim & Mohamad Rushdan Md. Said
 

 

200                                  International Journal of Cryptology Research 

 

1 21 2
( ,1) ( ,1)

x x
c V P V P≡ ⋅  

1 21 2
( ,1) ( ,1)

y y
d V P V P≡ ⋅ , 

1 21 2
( ,1) ( ,1)

z z
h V P V P≡ ⋅ . The 

public key is 21 2
( , , , , , )

p
P P c d h F

∗
 and the private key is

1 2 1 2 1 2
( , , , , , )x x y y z z . 

Next, the simulator emulates the decryption oracle for Eve, except 

outputting 

1 21 2
( ,1) ( ,1)

z z

e
m

V u V u
≡

⋅
to account for 

2
z . The simulator will be 

given two messages, 0m or 1m and randomly selects { }0,1b ∈ and calculates 

an encryption of  

 

1 21 2
(( ( ,1) ( ,1)),1)

k z z b
e V V P V P m≡ ⋅ ⋅ ,  

1 2
( , , ),H u u eα ≡  

 
and 

( ) ( )
1 2 1 21 2 1 2 ( ,1) ( ,1) ( ,1) ( ,1)k x x k y yv V V P V P V V P V Pα≡ ⋅ ⋅ ⋅ . 

 

Thus, the outputs 1 2( , , , )u u e v  completed the description of the 

simulator. When the input is taken from D, the simulator’s encryption will 

be a valid ciphertext. Conversely, if the input comes from R, the encryption 

will not be valid because 
1 21 2

log log
P P

u u≠ . □ 

 
The following lemma 3 and lemma 4 will continue prove theorem 3. 

 

Lemma 3. When the simulator’s input is taken from D, the encryption and 
calls to the decryption oracle are indistinguishable to the adversary from an 

actual adaptive chosen ciphertext attack. 

 

Proof: The input comes from D so 
1 1

( ,1)
k

u V P=  and 
2 2

( ,1)
k

u V P= . Since 

1 2
,u u  are indistinguishable from an actual ciphertext, then 

( ,1)
k

e V h m≡ ⋅ making e indistinguishable as well. After that, v equation 

must be verified and Eve can not distinguish the simulation’s encryption 
from a real encryption. 

 

Now, consider two possible types of input ' ' ' '

1 2
( , , , )u u e v to the decryption 

oracle. A valid ciphertext happened when 
1 2

' '

1 2
log log

P P
u u= .  
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That means, '

'

1 1
( ,1)

k
u V P= , '

'

2 2
( ,1)

k
u V P=  and the output is 

1 21 2 1
( ,1) ( ,1) ( ( ,1),1)

z z z k

e e

V u V u V V P
=

⋅
. Reversely, we will have an invalid 

ciphertext as a result. □ 

 

Lemma 3 follows from the following claim: 

 
Claim 1: The decryption oracle in both actual attack against the 

cryptosystem and in the simulator rejects all in valid ciphertext except with 

negligible probability. 

 
Now to prove this claim we need to consider the distribution 

21 2 1 2
( , , , )

p
P x x y y F

∗
= ∈ conditioned on Eve’s knowledge. We refer log() to 

1
log ()

P
and let 

2
log( )w P= . Eve can formulate the following two equations 

to place restrictions on the distribution: 

 

  
1 21 2 1 2

log( ) log( ( ,1) ( ,1))
x x

c V P V P x wx= ⋅ = +   (1) 

  
1 21 2 1 2

log( ) log( ( ,1) ( ,1))
y y

d V P V P y wy= ⋅ = +   (2) 

 

The decryption oracle will reject the invalid ciphertext ' ' ' '

1 2
( , , , )u u e v with 

1

'

1 1
log ( )

P
u r=  and 

2

'

2 2
log ( )

P
u r= , unless the test equation of v can be verified. 

Since 1 2 1 2, , ,x x y y  is chosen randomly and not available to Eve, the chance 

that 2-dimensional plane, P falls onto any line is negligible. Thus, the 
decryption oracle rejects all invalid ciphertext except with negligible 

probability. 

 
Lemma 4. When the simulator’s input comes from R, the encrypted 

message is perfectly hidden, and thus cannot be distinguished by Eve.  

 

Proof: Let 
11 1
( ,1)

k
u V P= and 

22 1
( ,1)

wk
u V P= . We may assume that 

1 2
k k≠ , 

since this happens except with negligible probability. Lemma 4 follows from 
the following two claims: 

 

Claim 2: If the decryption oracle rejects all invalid ciphertexts, then the 
encrypted message will be hidden from Eve. 
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Let consider the point 
2

1 2
( , )

p
Q z z F= ∈ . Eve only can access 

1 21 2
( ( ,1) ( ,1))

z z
h V P V P= ⋅ before any calls to the decryption oracle. Thus, Q is 

a random point on the line: 
 

1 2
log( )h z wz= +      (3) 

 

Continuously, Eve can feed the decryption oracle ciphertexts ' ' ' '

1 2
( , , , )u u e v to 

gain information about 1 2
' '
1 1 2 2

' '

1 2 1 2
( ,1) ( ,1)

z z

k z k z
u u V P V P= ⋅ . If the decryption 

oracle only decrypts valid ciphertext then Eve obtains the information only 

when 
' '

1 2r r= and so ' '
1 1 2 2

1 2 1( ,1) ( ,1) ( ( ,1))z kk z k z
V P V P V V P⋅ = , yields only the 

linearly dependant relation ' ' '

1 2
log( )r h r z wr z= + , giving no further 

information about Q. In the simulator’s encryption 
1 2

( , , , )u u e v , the 

information about the message m is contained only within 
b

e mε= ⋅ . This 

yields the constraint on ε : 

 

  
1 1 2 2

log( ) r z wr zε = +      (4) 

 

Equation (3) and (4) are linearly independent, so the distribution in Eve’s 

view is uniform. Moreover, 
b

e mε= ⋅ constitutes a perfect one-time pad. 

 

Claim 3: The decryption oracle will reject all invalid ciphertexts except with 

negligible probability. 
 

Now, consider 
4

1 2 1 2
( , , , )

p
P x x y y F= ∈ . This is a random point on the line L 

which is the intersection of Equation (1) and (2). Thus, from Eve’s 

knowledge log(v) can be calculated. However, we have to consider the 

following three cases when Eve tries to send an invalid ciphertext 
' ' ' '

1 2
( , , , )u u e v to the decryption oracle. 

 

Case 1: If ' ' '

1 2 1 2
( , , ) ( , , )u u e u u e= . The decryption oracle rejects when 

'v v≠ . 

 

Case 2: If ' ' '

1 2 1 2
( , , ) ( , , )u u e u u e≠  and 'α α≠ .The decryption oracle rejects 

unless P lies on equation (1a) and (1b). That means the oracle will rejects 
since we have linearly independent equations and H intersects L at a single 
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point, except with the negligible probability that this intersection lies only on 

P.  
 

Case 3: If ' ' '

1 2 1 2( , , ) ( , , )u u e u u e≠ and 'α α= . This occurs with only negligible 

probability since H is defined as a collision resistant hash function. 
 

 

CONCLUSION 

The key generation, encryption and decryption algorithm of a new 

cryptosystem that is analogous to LUCELG and Cramer-Shoup have been 

defined. The two types of security in the new scheme provide the strengths 
of the new cryptosystem since it is based on Lucas problem and it is also 

secure against the most powerful attack. Further research can be continued 

to develop another cryptosystem by using the third order linear recurrence 

relation or evaluating the new cryptosystem based on security of 
pseudorandom generators. 
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