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ABSTRACT 

Stream ciphers are the standard form of encryption for most applications in secure 
communications. Recently, many existing stream cipher proposals have been shown to 
be insecure. Given the wide usage, there have been several attempts at establishing 
national or global standards for stream ciphers. In 2000, there was a call for stream 
cipher proposals for use in Europe: the NESSIE project. No suitable candidates were 
found during this project, and in 2005 the eSTREAM project is again attempting to 

find stream cipher algorithms suitable for widespread adoption. In this paper we 
describe and discuss the LILI and Dragon ciphers, submissions to NESSIE and 
eSTREAM respectively. The security of each cipher is examined.  It is shown that 
both LILI-II and Dragon ciphers are efficient and secure keystream generators for 
stream ciphers. 

 

INTRODUCTION 

A stream cipher is an encryption algorithm which breaks a plaintext 
message into successive characters and encrypts each character under some 

time-varying function of the key. Thus different occurrences of the same 

plaintext character may encrypt to different ciphertext characters. Stream 
ciphers may be either synchronous or self synchronous. For synchronous 

stream ciphers, the keystream is generated independently of the plaintext 

message and the ciphertext, whereas for self-synchronous stream ciphers, the 
keystream is generated as a function of the key and a fixed number of 

ciphertext characters.  

 

The plaintext message characters used for stream ciphers operating on 
electronic data are usually binary digits (bits) or n-bit words, as are the 

ciphertext and keystream characters. The most common form of synchronous 

stream cipher is the binary additive stream cipher, where a binary keystream 
(a sequence of bits) is generated independently of the plaintext and the 

ciphertext. The keystream is combined with the plaintext or ciphertext using 

bitwise modulo two addition of the two streams, to form ciphertext or 

plaintext, respectively. Let ( ) ( ),p t c t  and ( )z t  represent, respectively, the 

plaintext, ciphertext and keystream characters at time t, for 0t ≥ . Then 
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( ) ( ) ( )c t p t z t= ⊕ , where ⊕ denotes addition modulo 2. Similarly, 

( ) ( ) ( )p t c t z t= ⊕ . A major advantage of this system is that the same device 

can be used to perform both encryption and decryption. 
 

Note that if some segment of the plaintext is known, then by 

combining it with the corresponding ciphertext, a segment of the keystream 

is revealed, since ( ) ( ) ( )z t p t c t= ⊕ . The cipher cannot be considered secure 

if it is possible to predict the entire keystream from a shorter known segment. 

Thus the keystream generator is the critical security component of the binary 

additive synchronous stream cipher. Security analysis for binary additive 

stream ciphers focusses on analysis of the keystream generator and 
properties of the sequences it produces.  

 

Keystream generators are referred to as bit-based or word-based, 

depending on the size of the output at each time interval. A bit-based 

keystream generator produces output sequences one bit at a time, whereas a 
word-based keystream generator produces output sequences one n-bit word 

at a time.  Common word sizes are n = 8 or n =32.  For efficient 

implementation, word sizes may be selected to match particular computer 

architecture. The function used to combine the keystream with plaintext or 
ciphertext can still be addition modulo 2, regardless of the selected word 

size. 
 

Cryptanalysis of a keystream generator for a stream cipher involves 

examining the structure of the generator and considering relationships 
between the internal state values and the output. For a good keystream 

generator, given knowledge of the structure of the generator and a segment 

of the keystream, a cryptanalyst should not be able to predict the rest of the 

keystream any better than merely guessing. That is, the keystream should 
appear to be a random sequence. Necessary, but not sufficient, requirements 

for cryptographically useful pseudo-random binary sequences are a long 

period, large linear complexity and good statistical properties. High linear 
complexity avoids an attack using the Berlekamp-Massey algorithm 

(Massey, 1969), which requires a length of keystream only twice the linear 

complexity of the sequence to produce the entire keystream. A bias in the 
distribution of zeroes and ones in the keystream can be used to reduce the 

unpredictability of the keystream sequence.In addition to these properties, it 

is necessary for the keystream generator to provide resistance to known 

styles of attack, including time-memory–data tradeoff attacks (Babbage, 
1995; Golić, 1997), divide and conquer attacks, correlation attacks 

(Siegenthaler 1985) and algebraic attacks (Courtois and Meyer, 2003). 
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In some communication systems, it is possible that transmission 

errors occur which require that the entire message be re-sent. When a 

synchronous stream cipher is used, then a security requirement is that a 

different keystream sequence be used. Another common situation associated 
with the use of synchronous stream ciphers is that a message will be sent in 

frames or packets, each encrypted under the same key, k . Once again it is 

important that a different keystream sequence be used for each frame. For 

either of these situations, the same key can be used with the keystream 

generator to produce a different output sequence, provided that the initial 
states at the start of keystream generation is different. To achieve this, a re-

keying algorithm is used to combine the secret key, k , with a publicly 

known initialisation vector. Let 
j

v denote the initialisation vector used for the 

thi re-keying. The initialisation scheme for a stream cipher describes how the 

initial state of the keystream generator can be derived from k and 
j

v . The 

use of re-keying introduces a new attack scenario, as it is now possible for a 

cryptanalyst to access multiple related keystreams, produced under the same 

k but different known 
j

v , typically sequential or varying in only a few bits. 

The crypanalyst’s task is then to recover k given a set of ( ),jv z pairs. 

 

The authors of this paper have been involved in the process of 

designing several keystream generators for synchronous stream ciphers, 

including both bit-based and word based designs. These designs have been 
submitted to international projects such as the New European Scheme for 

Signatures, Integrity and Encryption (NESSIE, 1999) and the current 

eSTREAM project. In this paper, we review these designs and the design 
principles that were applied to provide good keystream properties and 

resistance to known attacks for each of these keystream generators. The LILI 

family of bit-based keystream generators is discussed first, followed by the 
word-based DRAGON cipher. 
 

 

LILI KEYSTREAM GENERATORS 

The LILI family of keystream generators for stream ciphers were 

introduced in (Simpson et. al, 2000). LILI keystream generators are simple 

and fast keystream generators that use two binary LFSRs and two functions 

to generate a pseudorandom binary keystream sequence. The components of 
the keystream generator can be grouped into two subsystems based on the 

functions they perform: clock control and data generation. Each subsystem 

consists of an LFSR and a function. The LFSR for the clock-control 
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subsystem is regularly clocked. The output of the clock-control subsystem is 
an integer sequence which controls the clocking of the LFSR within the data-

generation subsystem. If regularly clocked, the data-generation subsystem is 

a simple nonlinearly filtered LFSR (Rueppel, 1986). Hence a LILI keystream 
generator may be viewed as a clock-controlled nonlinear filter generator.  

 

The clock-control subsystem of the keystream generator uses a 
pseudorandom binary sequence produced by a regularly clocked LFSR, 

LFSRC, of length LC and a function, ,
c

f operating on the contents of k stages 

of LFSRC to produce a pseudorandom integer sequence, ( ){ }
1t

c c t
=

= . For 

practical applications, it is assumed that the feedback polynomial of LFSRC 

is primitive and that the initial state of LFSRC is not the all zero state. Then 

LFSRC produces a maximum-length sequence of period 2 1Lc

c
P = − . At time 

instant t, the contents of a fixed set of k stages of LFSRC are input to 
c

f and 

the output of 
c

f is an integer ( )c t , such that ( )c t is an element of 

{ }1,2,...2
k

. The function fC is a bijective mapping from{ } { }0,1 1,...,2
k k

→  so 

that the distribution of integers ( )c t  is close to uniform. Thus c is a periodic 

integer sequence with period equal to 
c

P . For example, 

( ) }1 1 2,... 1 2 ... 2
k x

c k kf x x x x x
−

= + + + + is appropriate. 

 

The variable parameters in the clock-control subsystem are 
c

L , the 

feedback function of LFSRC, k, the positions of k stages of LFSRC used as 

inputs to the clocking function 
c

f  and 
c

f  itself.  
 

The data-generation subsystem of the keystream generator uses the 
integer sequence c produced by the clock-control subsystem to control the 

clocking of a binary ,
D

LFSR LFSR , of length 
D

L . At time instant t, 
D

LSFR is 

clocked ( )c t times.  The contents of a fixed set of n stages of 
D

LSFR are 

input to a nonlinear Boolean function, 
D

f . The binary output of 
D

f  forms 

the keystream bit ( )z t .  After ( )z t is produced, 
D

LSFR is clocked and the 

process repeated to form the keystream z.  
 

If 
D

LSFR is regularly clocked, then the data-generation subsystem is 

simply a nonlinear filter generator.  It is assumed that the feedback 

polynomial of 
D

LSFR is primitive and that the initial state of 
D

LSFR is not 

the all zero state. Then 
D

LSFR produces a maximum-length sequence of 
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period 2 1Ld

D
P = − . The output of a regularly clocked nonlinear filter 

generator is a periodic binary sequence, g, with period dividing 
D

P . In 

(Simpson, 1999) it is proven that, if 
D

LSFR has a primitive feedback 

polynomial and nonzero initial state and either 
D

f is balanced or 
D

P  is prime 

and 
D

f is not a constant function (zero or one), then the period of g is 
D

P . 
 

The variable parameters in the data-generation subsystem are 
D

L , the 

feedback function of 
D

LSFR , n , the positions of n  stages of 
D

LSFR used as 

inputs to the filter function 
D

f and 
D

f  itself. The function
D

f should be 

balanced, highly nonlinear and offer some order of correlation immunity 

relative to the positions of the n  stages used as inputs to 
D

f . The 

nonlinearity of a Boolean function is defined to be the minimum Hamming 
distance between the function and any affine function.  

 

LILI Keystream Properties 

The basic requirements; period, linear complexity and statistical properties; 

are addressed with respect to the LILI family of keystream generators. Let 

both 
C

LSFR  and 
D

LSFR have primitive feedback polynomials and nonzero 

initial states. If either 2 1
Ld

−  is a prime and 
D

f  is not a constant function, or 

if 
D

f  is balanced and ( )1
2 2 1 1

Lc k−
+ − is relatively prime to 2 1

Ld
− (provided 

that ( )0,...0 1
c

f = , then the period of the output sequence z is given by the 

product ( )( )2 1 2 1
Lc Ld

zP = − − . Note that this period implies that each 

distinct initial state results in the production of a distinct keystream. This 
avoids the reduction in keyspace which commonly occurs in keystream 

generators using irregular clocking, where several initial states produce the 

same keystream. 
 

For LILI keystream generators, the output of a nonlinear filter generator with 

period 2 1Ld

D
P = −  or a divisor of 

D
P  is nonuniformly decimated by means 

of a sequence with period 2 1Lc

c
P = − . For a nonuniformly decimated 

nonlinearly filtered LSFR  sequence, the maximal attainable linear 

complexity is the product of '
d

L and 
c

P , where '
d

L is the linear complexity 

of the (regularly clocked) nonlinearly filtered 
D

LSFR  sequence. The value of 

'
d

L depends on the filter function and on the positions of stages used for its 

inputs but is very likely to be lower bounded by Ld

r
C , the number of 
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combinations formed from 
d

L  things, taken r at a time, where r is the 

nonlinear algebraic order of the filter function. This conjectured linear 

complexity for a binary sequence produced by a LILI keystream generator is 

supported by experimental results in (Simpson, 2000). 
 

The distribution of zeroes and ones in the output sequence of the keystream 
produced by a LILI keystream generator is also examined.  Under regular 

clocking, one period of the sequence d produced by 
D

LSFR  when regularly 

clocked contains 
1

2 1
Ld −

−  zeroes and 
1

2
Ld −

  ones.  For a balanced filter 

function such that ( )0,...,0 0
D

f = , a segment of length 2 1
Ld

− of the 

regularly clocked nonlinear filter generator output sequence g has the same 

distribution of zeroes and ones as d. When the clocking of 
D

LSFR is under 

the control of 
C

LSFR  and when the period of z  is ( )( )2 1 2 1
Lc Ld

zP = − − , 

then each pair of 
C

LSFR and 
D

LSFR states occurs exactly once in a period of 

z . Therefore one period of z contains ( )( )1
2 1 2 1

Lc Ld −
− −  zeroes and 

( )( )1
2 1 2

Lc Ld −
− ones, thus maintaining the same proportion of zeroes and 

ones as in d. 
 

 

LILI-128 KEYSTREAM GENERATOR 

LILI-128 (Dawson, 2000) is a specific cipher from the LILI family of 

keystream generators, which was submitted as a candidate to the NESSIE 
process in 2000. The objective of the NESSIE process was to obtain a 

portfolio of strong cryptographic primitives for consideration as New 

European Security Standards. The LILI-128 keystream generator has an 

internal state size of 128 bits, where the lengths of 
C

LSFR and 
D

LSFR are 39 

and 89 bits, respectively.  
 

LILI-128 Description 

The clock-control subsystem of the LILI-128 keystream generator is based 

on the 39-bit register 
C

LSFR . The feedback polynomial of 
C

LSFR is the 

primitive polynomial 39 35 33 31 17 15 14 2 1x x x x x x x x+ + + + + + + + , and the 

initial state of 
C

LSFR is not permitted to be the all zero state. It follows that 

C
LSFR produces a maximum-length sequence of period 392 1

C
P = − . The 

function 
C

f  in the clock-control subsystem operates on the contents of 
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2k = stages of 
C

LSFR ., stages 12 and 20. The function is given 

by ( ) ( )12, 20 12 20
2 1

c
f x x x x= + +  . Hence the output of the clock-control 

subsystem is an integer sequence of period 392 1
C

P = − . 
 

The data-generation subsystem of LILI-128 uses the integer sequence c 
produced by the clock-control subsystem to control the clocking of a binary 

LFSR,
D

LSFR ,of length register 89
D

L = .  
 

The feedback polynomial of 
D

LSFR  is the primitive polynomial 
89 83 80 55 53 42 39 1x x x x x x x x+ + + + + + + + , and the initial state of 

D
LSFR is 

not permitted to be the all zero state. It follows that, if regularly clocked 

D
LSFR produces a maximum-length sequence of period 892 1

D
P = − , which 

is a Mersenne Prime. The contents of a fixed set of 10n = stages of 

D
LSFR are input to a specially chosen Boolean function, 

D
f . The 10 inputs 

to 
D

f are taken from register positions according to this full positive 

difference set: ( )0,1,3,7,12,20,30,44,65,80 . The function 
D

f  has been 

chosen to be balanced, highly nonlinear and to satisfy the third order of 
correlation immunity relative to the positions of the 10 stages used as inputs 

to 
D

f . The binary output of 
D

f  is the keystream bit ( )z t . After ( )z t  is 

produced, the LSFRs  are clocked and the process repeated to form the 

keystream z.  
 

LILI-128 Re-Keying Algorithm 

The initial NESSIE call for submissions did not require a process for re-

keying, so the initialisation process in the original submission is merely key 

loading: the 128 bit key is used directly to form the initial values of the two 

shift registers, from left to right: the first 39 bits in 
C

LSFR then the 

remaining 89 bits in 
D

LSFR . During the NESSIE process, a re-keying 

scheme which accepted the 128-bit secret key k and an initialisation vector vi 
of up to 128 bits was requested. For efficiency, it was decided to use the 

structure of the LILI-128 keystream generator in the re-keying process.  
 

The LILI-128 re-keying process is as follows. Firstly, the initial state for the 

keystream generator is formed by binary addition modulo two (XOR) of the 
128-bit key k and the 128 bit initialisation vector vi (for a shorter 

initialisation vector, concatenation of vi to form a 128-bit string is required). 

Secondly, the keystream generator is run to produce an output segment, of 

which the leading b bits are discarded. Thirdly, the next 128 bits are loaded 
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into the LSFRs . The second and third steps are repeated a  times, to form 

the initial state for actual keystream generation. Suggested values for a  and 

b  are either 1a = and 128b = , or 2a =  and 0b = .  The total computation 

time required for re-keying is given by ( )128t a b= + , so for either of the 

suggested options, re-keying takes approximately the amount of time 
required to perform keystream generation of 256 bits. 
 

In the rare event that either register is initialised to an all zero state, then that 

initial state is declared invalid. All distinct valid initial states produce 

different keystreams, and there are no known weak keys. 
 

LILI-128 Keystream Properties 

Keystream sequences produced by the LILI-128 keystream generator have a 

period of ( )( )39 89 128
2 1 2 1 2− − ≈ . Note that this period implies that each 

distinct initial state results in the production of a distinct keystream. 
Secondly, the linear complexity of these keystream sequences is conjectured 

to be at least 
68

2 , so that at least 
69

2  consecutive bits of known plaintext are 

required for the Berlekamp-Massey attack to be successful. This is an 
infeasible amount of text to collect. Finally, the distribution of ones and 

zeros in the keystream is the same as that in the underlying LFSR sequence. 
 

Attacks on LILI-128  

There are three major published attacks on the LILI-128 keystream 

generator.  In chronological order, these are a time-memory trade-off attack 
(Saarinen, 2002), algebraic attacks (Courtois and Meier, 2003) and a 

correlation attack (Molland, 2004). The following paragraphs provide a brief 

outline of each of these attacks. 
 

A general time-memory-data tradeoff attack by Biryukov and Shamir (2000) 
can be applied to the LILI-128 keystream generator.  One possible tradeoff 

requires precomputation time and computation time equal to about
86

2 table 

lookups, and memory in 128-bit words equal to a known keystream length of 

about 
43

2 bits. The time-memory trade-off attack proposed by Saarinen 

(Saarinen, 2002) reduces the complexity of the attack by ignoring 
C

LSFR in 

the precomputation, and forming a table of pairs of 89-bit keys and 45-bit 

keystream segments formed by taking the output bits of fD from a regularly 

clocked LFSRD at intervals equivalent to the number of times
D

LSFR is 

clocked in one period of 
C

LSFR . During the runtime phase, the keystream 
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bits are sampled at intervals equivalent to the period of 
C

LSFR , and the 

stored table is searched for a match with the resultant string. This approach 

reduces the computational complexity of both the precomputation and real-

time phases of the attack to about 
56

2 , and requires storage in memory for a 

table of 
89

2  45-bit words. The reduction is achieved by an increase in the 

amount of known keystream required to a length of about
46

2  bits. 
 

Algebraic attacks on stream ciphers involve solving a system of multivariate 

polynomial equations relating the initial state of the stream cipher to the 
keystream produced, to recover the values of the initial internal state bits. 

These attacks have been highly effective against keystream generators based 

on regularly clocked bit-based LSFRs . Courtois and Meier (2003) suggest 

applying such an attack to the LILI-128 keystream generator in a divide and 

conquer style, by firstly guessing the 39-bit state of 
C

LSFR generating the 

clock control sequence, and then applying the algebraic attack to the 

appropriately positioned bits of the keystream sequence to recover the initial 

state of 
D

LSFR . An inconsistent set of equations indicates an error in 

guessing the initial state for 
C

LSFR . Such an attack requires a known 

keystream length of about 
18

2 bits, storage in memory of about 
43

2  bits and a 

runtime complexity of about 
96

2  memory lookups. An alternative algebraic 

attack uses a similar approach to Saarinen in ignoring the clock control 

provided by 
C

LSFR  and running a fast algebraic attack. Requirements for 

this attack are a known keystream length of about 
60

2  bits, storage in 

memory of about 
24

2 bits and a runtime complexity in the order of about 
31

2  
memory lookups.  
 

The correlation attack on LILI-128 by Molland (Molland, 2004) uses the 

correlation properties of the Boolean function 
D

f . A slight bias related to the 

output of the function permits a distinguishing attack, so that the output 
sequence produced by a regularly clocked nonlinear filter generator using 

this filter function can be distinguished from a truly random binary sequence, 

given enough keystream bits. The attack on LILI-128 consists of guessing 

the initial state of the clock-control register 
C

LSFR  producing the clock 

control sequence and positioning the known keystream bits as they would be 

in a regularly clocked nonlinear filter generator. Then the identified 

distinguisher is used to determine if the guessed initial state of 
C

LSFR  was 

correct. Once the initial state of 
C

LSFR is determined, the initial state of 

D
LSFR  is obtained by running a fast correlation attack. According to 

Molland, the requirements for this attack are a known keystream length of 
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about 
29

2 bits, storage in memory of about 
28

2  bits and a runtime complexity 

in the order of about 
57

2 operations. 
 

We note that although these attacks are theoretically possible; that is, they 

require less effort than exhaustive key search, for the most part they are not 

practical now or in the near future. For any keystream generators for stream 

ciphers the only way to prevent possible attacks which are faster than 
exhaustive key search is to use an initial state which is greater than the key 

size along with a secure initialisation scheme which will transform the secret 

key k and some other public information called an initialisation vector, vi, 
into a longer initial state. 
 

 

LILI-II KEYSTREAM GENERATORS 

Hypothesised attacks on LILI-128, and the request for a re-keying 

proposal prompted a review of the LILI-128 parameters to ensure provable 

security properties could be maintained while achieving an effective key size 
of 128 bits. LILI-II (Clark et al, 2002) is a specific cipher from the LILI 

family of keystream generators which achieves this security goal. The cipher 

has an internal state size of 255 bits, where the lengths of 
C

LSFR  and 

D
LSFR  are 128 and 127 bits, respectively.  

 

LILI-II Description 

The clock-control subsystem of the LILI-II keystream generator is based on a 

128-bit register 
C

LSFR . The feedback polynomial of 
C

LSFR is a particular 

primitive polynomial of degree 128 which is not sparse, and the initial state 

of 
C

LSFR is not permitted to be the all zero state. It follows 

that
C

LSFR produces a maximum-length sequence of period 1282 1
c

P = − . 

The function fC in the clock-control subsystem operates on the contents of 

2k = stages of 
C

LSFR , stages 0 and 126. The function is given by 

( ) ( )0, 126 0 126
2 1

c
f x x x x= + + . Hence the output of the clock-control 

subsystem is an integer sequence of period 1282 1
c

P = − . 
 

The data-generation subsystem of LILI-II uses the integer sequence c 
produced by the clock-control subsystem to control the clocking of a binary 

LSFR , 
D

LSFR ,of length register 127
D

L = . The feedback polynomial of 

D
LSFR  is a particular primitive polynomial of degree 127 which is not 
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sparse, and the initial state of 
D

LSFR  is not permitted to be the all zero state. 

It follows that, if regularly clocked 
D

LSFR produces a maximum-length 

sequence of period 1272 1
D

P = − , which is a Mersenne Prime. The contents of 

a fixed set of 12n = stages of 
D

LSFR are input to a specially chosen Boolean 

function, 
D

f . The 12 inputs to
D

f are taken from register positions which 

form a full positive difference set: ( )0,1,3,7,12,20,30,44,65,80,96,122 . The 

function 
D

f has been chosen to be balanced, highly nonlinear and has first 

order correlation immunity. The function 
D

f  has nonlinearity of 1992, and 

an algebraic order of 10. The binary output of 
D

f  is the keystream bit ( )z t . 

After ( )z t  is produced, the LSFRs  are clocked and the process repeated to 

form the keystream z . A full description of the LILI-II keystream generator, 

including the primitive polynomials associated with the two LSFRs is given 

in (Clark, et al. 2002). 
 

LILI-II Re-Keying Algorithm 

A re-keying scheme which accepted the 128-bit secret key k and an 

initialisation vector 
j

v of up to 128 bits was requested. If the initialisation 

vector has length less than 128 bits, then multiple copies of the vector are to 
be concatenated and truncated as required, to form a 128-bit vector. As for 

LILI-128, it was decided for efficiency to use the structure of the LILI-II 

keystream generator in the re-keying process.  
 

The LILI-II re-keying process uses the generator itself twice. Firstly, the 

initial state of 
C

LSFR is obtained by XORing the two 128-bit binary strings 

k  and 
i

v , and the initial state of 
D

LSFR is obtained by deleting the first bit 

of k  and the last bit of 
i

v  and XORing the two resulting 127-bit binary 

strings. Secondly, the cipher is run to produce an output string of length 255 
bits. For the second application of the cipher, the first 128 bits of this output 

string are used to form the initial state of 
C

LSFR and the remaining 127 bits 

are used to form the initial state of 
D

LSFR . The cipher is run again to 

produce an output string of length 255 bits. The output from this second 

application is used to form the initial state of the keystream generator at the 

beginning of keystream production. As previously, the first 128 bits form the 

initial state of 
C

LSFR , and the remaining 127 bits form the initial state of 

D
LSFR .  
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In the rare event that either register is initialised to an all zero state, then that 
initial state is declared invalid. All distinct valid initial states produce 

different keystreams, and there are no known weak keys. 
 

LILI-II Keystream Properties 

Firstly, keystream sequences produced by the LILI-II keystream generator 

have a period of ( )( )128 127 255
2 1 2 1 2− − ≈ . Note that this period implies that 

each distinct initial state results in the production of a distinct keystream. 

Also, this greatly exceeds the length of any practical plaintext, rendering any 
attacks based on a short period infeasible. Secondly, the linear complexity of 

these keystream sequences is conjectured to be at least
175

2 , so that at least 
176

2 consecutive bits of known plaintext are required for the Berlekamp-

Massey attack to be successful. This is an infeasible amount of text to 
collect. Finally, the distribution of ones and zeros in the keystream is the 

same as that in the underlying LSFR sequence. 
 

LILI-II Attack Resistance 

The large internal state size of 127 + 128 = 255 bits causes any of the 

tradeoffs for the general time-memory-data tradeoff attacks to be worse than 

exhaustive key search.  For example, for the time-memory attacks described 
in (Babbage, 1995), where the product of the time and memory requirements 

is equivalent to the state space, and the amount of keystream required is 

equivalent to the time, a 128 127 2552 .2 2= tradeoff could be used, although this 

requires time equivalent to exhaustive key search, and an excessive amount 

of memory and known keystream.  

In any case, the use of the initialisation scheme (the key-loading/re-keying 
algorithm) to expand the 128-bit secret key into a 255 bit initial state renders 

the time-memory attacks on LILI-II infeasible, as their performance is at 

best, no better than exhaustive key search. By employing the LILI-II 

algorithm itself during re-keying, we take advantage of both the known 
security properties of the algorithm and also its fast implementation. We 

have considered also the possibility of related key attacks using multiple key-

streams, but can identify no attack in the re-keying scenario which performs 
better than exhaustive key search. 
 

The large internal state size also provides resistance against the standard 

divide and conquer attacks, which target one or other of the LSFRs . We 

conjecture that the complexity of any divide and conquer attacks on LILI-II 
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exceeds 
128

2 operations, and also requires a substantial amount of known 

keystream bits.  
 

Taken together, these results indicate that LILI-II is a secure synchronous 

stream cipher, in that there are no currently known attacks on the cipher 

which are more feasible than exhaustive key search. 
 

LILI Keystream Generator Implementation Considerations 

There are several internal differences between the implementation of LILI-

128 and that of LILI-II. These differences include using Galois structure 

(rather than traditional Fibonacci style), for the LSFR  state transitions, the 

increase in the size of the registers and increasing the number of inputs to the 

filter function from 10 to 12. These aspects have different effects on the 
speed of the design in software. LILI-II is less efficient in software than 

LILI-128 mainly due to the larger LSFRs and larger Boolean function which 

are used in the design to increase security. However, in hardware LILI-II 

offers the same high speed as LILI-128. 
 

 

DRAGON KEYSTREAM GENERATOR 

Dragon (Chen, et al. 2005) is a word-based stream cipher designed 

with both security and efficiency in mind. The cipher was submitted to the 
ECRYPT eSTREAM project in April, 2005 and is currently one of the Phase 

2 Focus group ciphers. Dragon is constructed using a single word based non-

linear feedback shift register (NLFSR) and a nonlinear filter function with 

memory. Dragon uses a variable length key (128 or 256 bits) and 
initialisation vector of 128 or 256 bits, and produces 64 bits of keystream per 

iteration. At the heart of Dragon are two highly optimised 8 × 32 s-boxes. 

Dragon uses simple operations on 32-bit words to provide a high degree of 
efficiency in a wide variety of environments, making it highly competitive 

when compared with other word based stream ciphers.  
 

DRAGON description 

Dragon is constructed using a single word-based NLFSR. The register 
consists of thirty-two stages, each of which holds a 32-bit word. Thus the 

length of the register is 1024 bits. There is also a 64-bit memory component, 

M, so the total internal state size is 1088 bits.  The state update function, F, is 

used in both key setup and keystream generation operations.  The cipher can 
be used with either 128-bit key and initialisation vectors (DRAGON-128), or 

with 256-bit key and initialisation vectors (DRAGON 256). 
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The F function is a reversible mapping from 192 bits (six 32-bit words) to 
192 bits.  That is, it takes six 32-bit words as input, and produces six 32-bit 

words as output. Let a, b, c, d, e and f denote the six 32-bit words of input to 

F and a’, b’, c’, d’, e’ and f’ denote the six 32-bit words output. The F 

function has six component functions: 
1, 2, 3, 1, 2,

G G G H H and 3H . The G and H 

subfunctions, constructed from two 8x32-bit S-boxes, are used to provide 

algebraic completeness and high nonlinearity. Details of the subfunctions 

and the S-boxes are given in (Chen, et al. 2005). A network of modular 
additions (addition modulo 2

32
, denoted +) and binary additions (addition 

modulo 2, denoted ⊕) are used for diffusion in the F function. The F 
function can be divided into three parts: pre-mixing, substitution and post-

mixing.  Each part is designed for parallelisation, permitting speedy 

operation.  These layers are detailed below. 
 

In the premixing layer, two sets of operations can be performed in parallel: 

 
Set 1: B b a= ⊕  d d c= ⊕  f f e= ⊕  

Set 2: C c b= +  e e d= +  a a f= +  

 

This is followed by the substitution layer (applying the s-boxes): 
 

Set 3: ( )1
D d G a= ⊕  ( )2

f f G c= ⊕  ( )3
b b G e= ⊕  

Set 4: ( )1
A a H b= ⊕  ( )2

c c H d= ⊕  ( )3
e e H f= ⊕  

 
A final layer of mixing operations is performed:  

 
Set 5: 'd d a= +  'f f c= +  'b b e= +  

Set 6: 'c c b= ⊕  'e e d= ⊕  a’=a ⊕ f 

 

Dragon has a simple key and re-keying strategy, using the key k  and a 

known initialisation vector 
i

v . We briefly outline the rekeying scheme for 

Dragon -128 here. More extensive details, and the re-keying scheme for 

Dragon-256 may be obtained from (Chen, et al. 2005). The 1024-bit NLFSR 

is divided into eight 128-bit words, labelled 0W to 7W . This is initially filled 

by concatenating the key, the initialisation vector, and simple functions of 

these such as 
i

k k v= ⊕ . The memory component is initialised to a constant 

value. Following this, 16 iterations of the F function are performed, updating 

both the NLFSR and M in each round. The use of existing cipher 
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components in the initialisation scheme simplifies analysis and increases 

implementation efficiency. 
 

For keystream generation, inputs are taken from six of the thirty-two 32-bit 

stages of the NLFSR.  The selected stages are 0, 9, 16, 19, 30, and 31. These 

inputs form a full positive difference set. The 64-bit memory component M 
acts as a counter during keystream generation, with the initial value of M for 

keystream generation being the value of M at the end of the initialisation 

process. Inputs from the six 32-bit NLFSR stages and from M are used to 
form the six 32-bit inputs to the F function.  Four of the six 32-bit outputs are 

used to update the NLFSR and the remaining two are used to produce the 64-

bit output. This is repeated to produce the desired length of keystream. 
 

DRAGON Design Principles 

The key setup and keystream generation of Dragon both use the F function, 
for ease of implementation and for increased efficiency. However, the 

operations performed in key setup are deliberately different to those in 

keystream generation, so that the mapping of internal state to feedback is 
different. Another design consideration during initialisation was to ensure 

that no 256-bit key-initialisation vector pair will result in an initial state for 

Dragon that could be produced by an arbitrary 128-bit pair. This precludes a 
crypanalyst reducing the search space for a 256 bit key to that of a 128-bit 

key.  
 

DRAGON Keystream Properties 

Given the use of a 1024-bit NLFSR, the expected period for the internal state 

is around 
512

2 , assuming a pseudo-random mapping. With the additional 

memory component the expected period is increased to 
576

2 . For 

cryptographic use, a clear lower bound on the period is more important than 

an average value. The inclusion of the 64-bit counter, M, provides a 

guaranteed lower bound on the period of
64

2 .  Re-keying after the production 

of 
64

2 bits of keystream is recommended, and avoids the possibility of 

keystream collision attacks. 
 

Statistical tests provided by the CRYPT-X package were performed on the 

keystream produced by the Dragon cipher. The frequency, binary derivative, 
change point, subblock and runs tests were performed on 30 streams of 

Dragon output, each of length eight megabytes.  The sequence and linear 

complexity tests were executed for the thirty streams, each of length two 
hundred kilobytes. The Dragon keystream generator passed all of these tests. 
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Thus keystream produced by the Dragon generator appears to be suitably 
pseudo-random.    
 

Weak keys are those that bypass some operations of the cipher, that is, those 

keys for which the operations have negligible effect in calculating the 

feedback or the output.  Dragon is designed to avoid weak keys.  Use of the 

large word-based NLFSR and of functions with no fixed points has avoided 
the need to place restrictions on the internal state values (for LFSRs, it is 

common to forbid the all zero state, and this needs to be incorporated into re-

keying schemes).  Also the 16 iterations of the state update function during 
ke-keying ensures that specific differentials cannot be traced through all 

rounds.  This provides strong evidence that there are no weak keys for 

Dragon. 
 

Possible Attacks on the DRAGON Keystream Generator 

The use of initialisation vectors to produce multiple keystreams from a single 

master key gives the cryptanalyst the possibility of using multiple 

keystreams and the corresponding known initialisation vector to deduce 

information about the underlying master key. This may be possible if the 
initial state at the start of keystream generation can be readily expressed in 

terms of the unknown key bits and the known initialisation vector bits, so 

that the effect of small known changes in the initial state can be readily 
observed. However, the re-keying scheme for Dragon mixes each key bit into 

all words of the initial state by applying the highly nonlinear F function in 

each of 16 iterations. During initialisation, the F function output is used to 

update both the NLFSR and the memory, so the value of the memory is 
difficult to determine after the first iteration. The contents of the memory 

unit are also incorporated into the inputs to the F function during 

initialisation, increasing the difficulty for an attacker.   
 

Time-Memory tradeoff attacks rely on precomputation to reduce the effort 
required for a key recovery attack.  In a precomputation phase, the attacker 

calculates a table of keys or internal states and the associated keystream 

prefix. In the real time attack phase, the attacker attempts to match observed 
keystream to table entries, and thus recover the internal state and/or key bits.  

The large internal state space (1088 bits) of the Dragon keystream generator 

in comparison to the key size, coupled with the initialisation scheme means 

that an attacker would have to precompute a table for each initialisation 
vector. Any tradeoff of time, memory or keystream requirement will be 

much worse than exhaustive key search.   
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The stages of the NLFSR used to provide input to the state update function 

form a full positive difference set. This is useful in providing resistance to 

guess and determine style attacks, as for any guessed subset of inputs at a 

fixed point in time, at most one of these values will also be an input at the 
next time interval.  Thus an attacker must guess increasingly more input 

values. The rapid increase in the number of possible guess pathways makes 

this approach infeasible. This attack strategy cannot be more effective than 
exhaustive key search.  
 

A distinguishing attack is an attack in which the output sequence from a 

stream cipher can be statistically distinguished from a truly random 

sequence. That is, there is some property of the keystream sequence that an 

attacker can identify which indicates that the sequence has been produced by 
a particular pseudorandom keystream generator. Englund and Maximov 

(2005) describe a distinguishing attack against Dragon-256 which requires 
155

2 keystream words produced from a single key-initialisation vector pair. 
This keystream requirement greatly exceeds the permitted maximum 

keystream length of 
64

2  bits, and so is of theoretical interest only, and does 

not constitute a security compromise. There are two variants of the attack, 

one with complexity of 
187

2  operations and memory requirements of 
32

2 words, and a second with complexity of 
155

2 operations and memory 

requirements of 
96

2 words. Disregarding the excessive keystream 

requirement, neither attack is better than exhaustive keysearch for Dragon-
128. In any case, the attack remains a distinguishing attack, and cannot be 

extended to key recovery.  
 

Dragon Keystream Generator Implementation Considerations 

Dragon is designed to be efficient in both software and hardware, in terms of 
both throughput and implementation footprint.  The 32-bit word size was 

selected to match that of the ubiquitous Intel Pentium family, as it leads to 

the best software efficiency on this platform. The design allows a high 

degree of parallelisation in hardware, as the operations can be divided into 
three groups, each operating on two inputs. 
 

 

IMPLEMENTATION 

The bit-based LILI keystream generators and the word-based Dragon 

design have very different structures, with an increase in complexity 

accompanying the shift to word-based design. Both designs can be 
implemented in either hardware or software. The bit-based design of the 
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LILI generators provide a better performance in hardware, whereas the word-
based Dragon generator is much faster in software, as expected. For 

comparison, software performance figures on a 3.2 GHz Intel Pentium 4 are 

given in the following table for the keystream generators LILI-128, LILI-II 
and Dragon, and for the block cipher AES. AES is the current block cipher 

encryption standard. As there is no current stream cipher standard, and a 

block cipher can be used (in an appropriate mode) for keystream generation, 

a useful stream cipher should be able to provide greater throughput than AES 
to be considered useful. On this basis, we recommend the use of Dragon 

rather than LILI for software implementation. 

 
Keystream generator Throughput 

LILI-128 72 Mbps 

LILI-II 66 Mbps 

Dragon 3820 Mbps 

AES 1828 Mbps 

 

 

CONCLUSION 

In this paper we described and discussed the LILI family of 

keystream generators (including the particular instances LILI-128 and LILI-

II) and also the Dragon keystream generator, submissions to NESSIE and 

eSTREAM respectively. The principles on which design choices were based 
are outlined.  

 

The progression of the designs over time shows the changing 

landscape for stream cipher design. Most keystream generator designs for 

stream ciphers proposed prior to the year 2000 were bit-based designs, like 
the LILI family. Commonly, they used the key directly as the initial state, 

and re-keying to make use of a secret master key with multiple known 

initialisation vectors was uncommon. The application of stream ciphers to 
new environments such as mobile telephony and internet applications has 

changed this. The call for initialisation and re-keying schemes to be added to 

the NESSIE submissions reflects the importance of these aspects in design 

specifications 
 

The increasing application of encryption in software rather than 
hardware has been a driving force in the move toward word-based designs. 

Many of the designs submitted to the recent eSTREAM project are word-

based stream ciphers, like Dragon. The only bit-based designs submitted to 
eSTREAM are submissions under the hardware profile. 
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As the complexity of proposed stream cipher designs increases, it 

becomes difficult to provide theoretical support for security claims, even 

regarding basic security properties. Both LILI and Dragon designs have been 

subject to public scrutiny. Both LILI-II and Dragon ciphers are efficient and 
secure keystream generators for stream ciphers. We recommend the use of 

LILI-II for hardware applications and Dragon for software implementation. 

Further investigation into the security provided by these designs is 
welcomed. 
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