
International Journal of Cryptology Research 1(2): 129-148 (2009)

LILI to Dragon:

from Bit-Based to Word-Based Stream Ciphers

Ed Dawson and Leonie Simpson
Information Security Institute,

Queensland University of Technology, Australia

E-mail: e.dawson@qut.edu.au;lr.simpson@qut.edu.au

ABSTRACT

Stream ciphers are the standard form of encryption for most applications in secure
communications. Recently, many existing stream cipher proposals have been shown to
be insecure. Given the wide usage, there have been several attempts at establishing
national or global standards for stream ciphers. In 2000, there was a call for stream
cipher proposals for use in Europe: the NESSIE project. No suitable candidates were
found during this project, and in 2005 the eSTREAM project is again attempting to

find stream cipher algorithms suitable for widespread adoption. In this paper we
describe and discuss the LILI and Dragon ciphers, submissions to NESSIE and
eSTREAM respectively. The security of each cipher is examined. It is shown that
both LILI-II and Dragon ciphers are efficient and secure keystream generators for
stream ciphers.

INTRODUCTION

A stream cipher is an encryption algorithm which breaks a plaintext
message into successive characters and encrypts each character under some

time-varying function of the key. Thus different occurrences of the same

plaintext character may encrypt to different ciphertext characters. Stream
ciphers may be either synchronous or self synchronous. For synchronous

stream ciphers, the keystream is generated independently of the plaintext

message and the ciphertext, whereas for self-synchronous stream ciphers, the
keystream is generated as a function of the key and a fixed number of

ciphertext characters.

The plaintext message characters used for stream ciphers operating on
electronic data are usually binary digits (bits) or n-bit words, as are the

ciphertext and keystream characters. The most common form of synchronous

stream cipher is the binary additive stream cipher, where a binary keystream
(a sequence of bits) is generated independently of the plaintext and the

ciphertext. The keystream is combined with the plaintext or ciphertext using

bitwise modulo two addition of the two streams, to form ciphertext or

plaintext, respectively. Let () (),p t c t and ()z t represent, respectively, the

plaintext, ciphertext and keystream characters at time t, for 0t ≥ . Then

Ed Dawson & Leonie Simpson

130 International Journal of Cryptology Research

() () ()c t p t z t= ⊕ , where ⊕ denotes addition modulo 2. Similarly,

() () ()p t c t z t= ⊕ . A major advantage of this system is that the same device

can be used to perform both encryption and decryption.

Note that if some segment of the plaintext is known, then by

combining it with the corresponding ciphertext, a segment of the keystream

is revealed, since () () ()z t p t c t= ⊕ . The cipher cannot be considered secure

if it is possible to predict the entire keystream from a shorter known segment.

Thus the keystream generator is the critical security component of the binary

additive synchronous stream cipher. Security analysis for binary additive

stream ciphers focusses on analysis of the keystream generator and
properties of the sequences it produces.

Keystream generators are referred to as bit-based or word-based,

depending on the size of the output at each time interval. A bit-based

keystream generator produces output sequences one bit at a time, whereas a
word-based keystream generator produces output sequences one n-bit word

at a time. Common word sizes are n = 8 or n =32. For efficient

implementation, word sizes may be selected to match particular computer

architecture. The function used to combine the keystream with plaintext or
ciphertext can still be addition modulo 2, regardless of the selected word

size.

Cryptanalysis of a keystream generator for a stream cipher involves

examining the structure of the generator and considering relationships
between the internal state values and the output. For a good keystream

generator, given knowledge of the structure of the generator and a segment

of the keystream, a cryptanalyst should not be able to predict the rest of the

keystream any better than merely guessing. That is, the keystream should
appear to be a random sequence. Necessary, but not sufficient, requirements

for cryptographically useful pseudo-random binary sequences are a long

period, large linear complexity and good statistical properties. High linear
complexity avoids an attack using the Berlekamp-Massey algorithm

(Massey, 1969), which requires a length of keystream only twice the linear

complexity of the sequence to produce the entire keystream. A bias in the
distribution of zeroes and ones in the keystream can be used to reduce the

unpredictability of the keystream sequence.In addition to these properties, it

is necessary for the keystream generator to provide resistance to known

styles of attack, including time-memory–data tradeoff attacks (Babbage,
1995; Golić, 1997), divide and conquer attacks, correlation attacks

(Siegenthaler 1985) and algebraic attacks (Courtois and Meyer, 2003).

LILI to Dragon : From Bit-Based to Word-Based Stream Chipers

 International Journal of Cryptology Research 131

In some communication systems, it is possible that transmission

errors occur which require that the entire message be re-sent. When a

synchronous stream cipher is used, then a security requirement is that a

different keystream sequence be used. Another common situation associated
with the use of synchronous stream ciphers is that a message will be sent in

frames or packets, each encrypted under the same key, k . Once again it is

important that a different keystream sequence be used for each frame. For

either of these situations, the same key can be used with the keystream

generator to produce a different output sequence, provided that the initial
states at the start of keystream generation is different. To achieve this, a re-

keying algorithm is used to combine the secret key, k , with a publicly

known initialisation vector. Let
j

v denote the initialisation vector used for the

thi re-keying. The initialisation scheme for a stream cipher describes how the

initial state of the keystream generator can be derived from k and
j

v . The

use of re-keying introduces a new attack scenario, as it is now possible for a

cryptanalyst to access multiple related keystreams, produced under the same

k but different known
j

v , typically sequential or varying in only a few bits.

The crypanalyst’s task is then to recover k given a set of (),jv z pairs.

The authors of this paper have been involved in the process of

designing several keystream generators for synchronous stream ciphers,

including both bit-based and word based designs. These designs have been
submitted to international projects such as the New European Scheme for

Signatures, Integrity and Encryption (NESSIE, 1999) and the current

eSTREAM project. In this paper, we review these designs and the design
principles that were applied to provide good keystream properties and

resistance to known attacks for each of these keystream generators. The LILI

family of bit-based keystream generators is discussed first, followed by the
word-based DRAGON cipher.

LILI KEYSTREAM GENERATORS

The LILI family of keystream generators for stream ciphers were

introduced in (Simpson et. al, 2000). LILI keystream generators are simple

and fast keystream generators that use two binary LFSRs and two functions

to generate a pseudorandom binary keystream sequence. The components of
the keystream generator can be grouped into two subsystems based on the

functions they perform: clock control and data generation. Each subsystem

consists of an LFSR and a function. The LFSR for the clock-control

Ed Dawson & Leonie Simpson

132 International Journal of Cryptology Research

subsystem is regularly clocked. The output of the clock-control subsystem is
an integer sequence which controls the clocking of the LFSR within the data-

generation subsystem. If regularly clocked, the data-generation subsystem is

a simple nonlinearly filtered LFSR (Rueppel, 1986). Hence a LILI keystream
generator may be viewed as a clock-controlled nonlinear filter generator.

The clock-control subsystem of the keystream generator uses a
pseudorandom binary sequence produced by a regularly clocked LFSR,

LFSRC, of length LC and a function, ,
c

f operating on the contents of k stages

of LFSRC to produce a pseudorandom integer sequence, (){ }
1t

c c t
=

= . For

practical applications, it is assumed that the feedback polynomial of LFSRC

is primitive and that the initial state of LFSRC is not the all zero state. Then

LFSRC produces a maximum-length sequence of period 2 1Lc

c
P = − . At time

instant t, the contents of a fixed set of k stages of LFSRC are input to
c

f and

the output of
c

f is an integer ()c t , such that ()c t is an element of

{ }1,2,...2
k

. The function fC is a bijective mapping from{ } { }0,1 1,...,2
k k

→ so

that the distribution of integers ()c t is close to uniform. Thus c is a periodic

integer sequence with period equal to
c

P . For example,

() }1 1 2,... 1 2 ... 2
k x

c k kf x x x x x
−

= + + + + is appropriate.

The variable parameters in the clock-control subsystem are
c

L , the

feedback function of LFSRC, k, the positions of k stages of LFSRC used as

inputs to the clocking function
c

f and
c

f itself.

The data-generation subsystem of the keystream generator uses the
integer sequence c produced by the clock-control subsystem to control the

clocking of a binary ,
D

LFSR LFSR , of length
D

L . At time instant t,
D

LSFR is

clocked ()c t times. The contents of a fixed set of n stages of
D

LSFR are

input to a nonlinear Boolean function,
D

f . The binary output of
D

f forms

the keystream bit ()z t . After ()z t is produced,
D

LSFR is clocked and the

process repeated to form the keystream z.

If
D

LSFR is regularly clocked, then the data-generation subsystem is

simply a nonlinear filter generator. It is assumed that the feedback

polynomial of
D

LSFR is primitive and that the initial state of
D

LSFR is not

the all zero state. Then
D

LSFR produces a maximum-length sequence of

LILI to Dragon : From Bit-Based to Word-Based Stream Chipers

 International Journal of Cryptology Research 133

period 2 1Ld

D
P = − . The output of a regularly clocked nonlinear filter

generator is a periodic binary sequence, g, with period dividing
D

P . In

(Simpson, 1999) it is proven that, if
D

LSFR has a primitive feedback

polynomial and nonzero initial state and either
D

f is balanced or
D

P is prime

and
D

f is not a constant function (zero or one), then the period of g is
D

P .

The variable parameters in the data-generation subsystem are
D

L , the

feedback function of
D

LSFR , n , the positions of n stages of
D

LSFR used as

inputs to the filter function
D

f and
D

f itself. The function
D

f should be

balanced, highly nonlinear and offer some order of correlation immunity

relative to the positions of the n stages used as inputs to
D

f . The

nonlinearity of a Boolean function is defined to be the minimum Hamming
distance between the function and any affine function.

LILI Keystream Properties

The basic requirements; period, linear complexity and statistical properties;

are addressed with respect to the LILI family of keystream generators. Let

both
C

LSFR and
D

LSFR have primitive feedback polynomials and nonzero

initial states. If either 2 1
Ld

− is a prime and
D

f is not a constant function, or

if
D

f is balanced and ()1
2 2 1 1

Lc k−
+ − is relatively prime to 2 1

Ld
− (provided

that ()0,...0 1
c

f = , then the period of the output sequence z is given by the

product ()()2 1 2 1
Lc Ld

zP = − − . Note that this period implies that each

distinct initial state results in the production of a distinct keystream. This
avoids the reduction in keyspace which commonly occurs in keystream

generators using irregular clocking, where several initial states produce the

same keystream.

For LILI keystream generators, the output of a nonlinear filter generator with

period 2 1Ld

D
P = − or a divisor of

D
P is nonuniformly decimated by means

of a sequence with period 2 1Lc

c
P = − . For a nonuniformly decimated

nonlinearly filtered LSFR sequence, the maximal attainable linear

complexity is the product of '
d

L and
c

P , where '
d

L is the linear complexity

of the (regularly clocked) nonlinearly filtered
D

LSFR sequence. The value of

'
d

L depends on the filter function and on the positions of stages used for its

inputs but is very likely to be lower bounded by Ld

r
C , the number of

Ed Dawson & Leonie Simpson

134 International Journal of Cryptology Research

combinations formed from
d

L things, taken r at a time, where r is the

nonlinear algebraic order of the filter function. This conjectured linear

complexity for a binary sequence produced by a LILI keystream generator is

supported by experimental results in (Simpson, 2000).

The distribution of zeroes and ones in the output sequence of the keystream
produced by a LILI keystream generator is also examined. Under regular

clocking, one period of the sequence d produced by
D

LSFR when regularly

clocked contains
1

2 1
Ld −

− zeroes and
1

2
Ld −

 ones. For a balanced filter

function such that ()0,...,0 0
D

f = , a segment of length 2 1
Ld

− of the

regularly clocked nonlinear filter generator output sequence g has the same

distribution of zeroes and ones as d. When the clocking of
D

LSFR is under

the control of
C

LSFR and when the period of z is ()()2 1 2 1
Lc Ld

zP = − − ,

then each pair of
C

LSFR and
D

LSFR states occurs exactly once in a period of

z . Therefore one period of z contains ()()1
2 1 2 1

Lc Ld −
− − zeroes and

()()1
2 1 2

Lc Ld −
− ones, thus maintaining the same proportion of zeroes and

ones as in d.

LILI-128 KEYSTREAM GENERATOR

LILI-128 (Dawson, 2000) is a specific cipher from the LILI family of

keystream generators, which was submitted as a candidate to the NESSIE
process in 2000. The objective of the NESSIE process was to obtain a

portfolio of strong cryptographic primitives for consideration as New

European Security Standards. The LILI-128 keystream generator has an

internal state size of 128 bits, where the lengths of
C

LSFR and
D

LSFR are 39

and 89 bits, respectively.

LILI-128 Description

The clock-control subsystem of the LILI-128 keystream generator is based

on the 39-bit register
C

LSFR . The feedback polynomial of
C

LSFR is the

primitive polynomial 39 35 33 31 17 15 14 2 1x x x x x x x x+ + + + + + + + , and the

initial state of
C

LSFR is not permitted to be the all zero state. It follows that

C
LSFR produces a maximum-length sequence of period 392 1

C
P = − . The

function
C

f in the clock-control subsystem operates on the contents of

LILI to Dragon : From Bit-Based to Word-Based Stream Chipers

 International Journal of Cryptology Research 135

2k = stages of
C

LSFR ., stages 12 and 20. The function is given

by () ()12, 20 12 20
2 1

c
f x x x x= + + . Hence the output of the clock-control

subsystem is an integer sequence of period 392 1
C

P = − .

The data-generation subsystem of LILI-128 uses the integer sequence c
produced by the clock-control subsystem to control the clocking of a binary

LFSR,
D

LSFR ,of length register 89
D

L = .

The feedback polynomial of
D

LSFR is the primitive polynomial
89 83 80 55 53 42 39 1x x x x x x x x+ + + + + + + + , and the initial state of

D
LSFR is

not permitted to be the all zero state. It follows that, if regularly clocked

D
LSFR produces a maximum-length sequence of period 892 1

D
P = − , which

is a Mersenne Prime. The contents of a fixed set of 10n = stages of

D
LSFR are input to a specially chosen Boolean function,

D
f . The 10 inputs

to
D

f are taken from register positions according to this full positive

difference set: ()0,1,3,7,12,20,30,44,65,80 . The function
D

f has been

chosen to be balanced, highly nonlinear and to satisfy the third order of
correlation immunity relative to the positions of the 10 stages used as inputs

to
D

f . The binary output of
D

f is the keystream bit ()z t . After ()z t is

produced, the LSFRs are clocked and the process repeated to form the

keystream z.

LILI-128 Re-Keying Algorithm

The initial NESSIE call for submissions did not require a process for re-

keying, so the initialisation process in the original submission is merely key

loading: the 128 bit key is used directly to form the initial values of the two

shift registers, from left to right: the first 39 bits in
C

LSFR then the

remaining 89 bits in
D

LSFR . During the NESSIE process, a re-keying

scheme which accepted the 128-bit secret key k and an initialisation vector vi
of up to 128 bits was requested. For efficiency, it was decided to use the

structure of the LILI-128 keystream generator in the re-keying process.

The LILI-128 re-keying process is as follows. Firstly, the initial state for the

keystream generator is formed by binary addition modulo two (XOR) of the
128-bit key k and the 128 bit initialisation vector vi (for a shorter

initialisation vector, concatenation of vi to form a 128-bit string is required).

Secondly, the keystream generator is run to produce an output segment, of

which the leading b bits are discarded. Thirdly, the next 128 bits are loaded

Ed Dawson & Leonie Simpson

136 International Journal of Cryptology Research

into the LSFRs . The second and third steps are repeated a times, to form

the initial state for actual keystream generation. Suggested values for a and

b are either 1a = and 128b = , or 2a = and 0b = . The total computation

time required for re-keying is given by ()128t a b= + , so for either of the

suggested options, re-keying takes approximately the amount of time
required to perform keystream generation of 256 bits.

In the rare event that either register is initialised to an all zero state, then that

initial state is declared invalid. All distinct valid initial states produce

different keystreams, and there are no known weak keys.

LILI-128 Keystream Properties

Keystream sequences produced by the LILI-128 keystream generator have a

period of ()()39 89 128
2 1 2 1 2− − ≈ . Note that this period implies that each

distinct initial state results in the production of a distinct keystream.
Secondly, the linear complexity of these keystream sequences is conjectured

to be at least
68

2 , so that at least
69

2 consecutive bits of known plaintext are

required for the Berlekamp-Massey attack to be successful. This is an
infeasible amount of text to collect. Finally, the distribution of ones and

zeros in the keystream is the same as that in the underlying LFSR sequence.

Attacks on LILI-128

There are three major published attacks on the LILI-128 keystream

generator. In chronological order, these are a time-memory trade-off attack
(Saarinen, 2002), algebraic attacks (Courtois and Meier, 2003) and a

correlation attack (Molland, 2004). The following paragraphs provide a brief

outline of each of these attacks.

A general time-memory-data tradeoff attack by Biryukov and Shamir (2000)
can be applied to the LILI-128 keystream generator. One possible tradeoff

requires precomputation time and computation time equal to about
86

2 table

lookups, and memory in 128-bit words equal to a known keystream length of

about
43

2 bits. The time-memory trade-off attack proposed by Saarinen

(Saarinen, 2002) reduces the complexity of the attack by ignoring
C

LSFR in

the precomputation, and forming a table of pairs of 89-bit keys and 45-bit

keystream segments formed by taking the output bits of fD from a regularly

clocked LFSRD at intervals equivalent to the number of times
D

LSFR is

clocked in one period of
C

LSFR . During the runtime phase, the keystream

LILI to Dragon : From Bit-Based to Word-Based Stream Chipers

 International Journal of Cryptology Research 137

bits are sampled at intervals equivalent to the period of
C

LSFR , and the

stored table is searched for a match with the resultant string. This approach

reduces the computational complexity of both the precomputation and real-

time phases of the attack to about
56

2 , and requires storage in memory for a

table of
89

2 45-bit words. The reduction is achieved by an increase in the

amount of known keystream required to a length of about
46

2 bits.

Algebraic attacks on stream ciphers involve solving a system of multivariate

polynomial equations relating the initial state of the stream cipher to the
keystream produced, to recover the values of the initial internal state bits.

These attacks have been highly effective against keystream generators based

on regularly clocked bit-based LSFRs . Courtois and Meier (2003) suggest

applying such an attack to the LILI-128 keystream generator in a divide and

conquer style, by firstly guessing the 39-bit state of
C

LSFR generating the

clock control sequence, and then applying the algebraic attack to the

appropriately positioned bits of the keystream sequence to recover the initial

state of
D

LSFR . An inconsistent set of equations indicates an error in

guessing the initial state for
C

LSFR . Such an attack requires a known

keystream length of about
18

2 bits, storage in memory of about
43

2 bits and a

runtime complexity of about
96

2 memory lookups. An alternative algebraic

attack uses a similar approach to Saarinen in ignoring the clock control

provided by
C

LSFR and running a fast algebraic attack. Requirements for

this attack are a known keystream length of about
60

2 bits, storage in

memory of about
24

2 bits and a runtime complexity in the order of about
31

2
memory lookups.

The correlation attack on LILI-128 by Molland (Molland, 2004) uses the

correlation properties of the Boolean function
D

f . A slight bias related to the

output of the function permits a distinguishing attack, so that the output
sequence produced by a regularly clocked nonlinear filter generator using

this filter function can be distinguished from a truly random binary sequence,

given enough keystream bits. The attack on LILI-128 consists of guessing

the initial state of the clock-control register
C

LSFR producing the clock

control sequence and positioning the known keystream bits as they would be

in a regularly clocked nonlinear filter generator. Then the identified

distinguisher is used to determine if the guessed initial state of
C

LSFR was

correct. Once the initial state of
C

LSFR is determined, the initial state of

D
LSFR is obtained by running a fast correlation attack. According to

Molland, the requirements for this attack are a known keystream length of

Ed Dawson & Leonie Simpson

138 International Journal of Cryptology Research

about
29

2 bits, storage in memory of about
28

2 bits and a runtime complexity

in the order of about
57

2 operations.

We note that although these attacks are theoretically possible; that is, they

require less effort than exhaustive key search, for the most part they are not

practical now or in the near future. For any keystream generators for stream

ciphers the only way to prevent possible attacks which are faster than
exhaustive key search is to use an initial state which is greater than the key

size along with a secure initialisation scheme which will transform the secret

key k and some other public information called an initialisation vector, vi,
into a longer initial state.

LILI-II KEYSTREAM GENERATORS

Hypothesised attacks on LILI-128, and the request for a re-keying

proposal prompted a review of the LILI-128 parameters to ensure provable

security properties could be maintained while achieving an effective key size
of 128 bits. LILI-II (Clark et al, 2002) is a specific cipher from the LILI

family of keystream generators which achieves this security goal. The cipher

has an internal state size of 255 bits, where the lengths of
C

LSFR and

D
LSFR are 128 and 127 bits, respectively.

LILI-II Description

The clock-control subsystem of the LILI-II keystream generator is based on a

128-bit register
C

LSFR . The feedback polynomial of
C

LSFR is a particular

primitive polynomial of degree 128 which is not sparse, and the initial state

of
C

LSFR is not permitted to be the all zero state. It follows

that
C

LSFR produces a maximum-length sequence of period 1282 1
c

P = − .

The function fC in the clock-control subsystem operates on the contents of

2k = stages of
C

LSFR , stages 0 and 126. The function is given by

() ()0, 126 0 126
2 1

c
f x x x x= + + . Hence the output of the clock-control

subsystem is an integer sequence of period 1282 1
c

P = − .

The data-generation subsystem of LILI-II uses the integer sequence c
produced by the clock-control subsystem to control the clocking of a binary

LSFR ,
D

LSFR ,of length register 127
D

L = . The feedback polynomial of

D
LSFR is a particular primitive polynomial of degree 127 which is not

LILI to Dragon : From Bit-Based to Word-Based Stream Chipers

 International Journal of Cryptology Research 139

sparse, and the initial state of
D

LSFR is not permitted to be the all zero state.

It follows that, if regularly clocked
D

LSFR produces a maximum-length

sequence of period 1272 1
D

P = − , which is a Mersenne Prime. The contents of

a fixed set of 12n = stages of
D

LSFR are input to a specially chosen Boolean

function,
D

f . The 12 inputs to
D

f are taken from register positions which

form a full positive difference set: ()0,1,3,7,12,20,30,44,65,80,96,122 . The

function
D

f has been chosen to be balanced, highly nonlinear and has first

order correlation immunity. The function
D

f has nonlinearity of 1992, and

an algebraic order of 10. The binary output of
D

f is the keystream bit ()z t .

After ()z t is produced, the LSFRs are clocked and the process repeated to

form the keystream z . A full description of the LILI-II keystream generator,

including the primitive polynomials associated with the two LSFRs is given

in (Clark, et al. 2002).

LILI-II Re-Keying Algorithm

A re-keying scheme which accepted the 128-bit secret key k and an

initialisation vector
j

v of up to 128 bits was requested. If the initialisation

vector has length less than 128 bits, then multiple copies of the vector are to
be concatenated and truncated as required, to form a 128-bit vector. As for

LILI-128, it was decided for efficiency to use the structure of the LILI-II

keystream generator in the re-keying process.

The LILI-II re-keying process uses the generator itself twice. Firstly, the

initial state of
C

LSFR is obtained by XORing the two 128-bit binary strings

k and
i

v , and the initial state of
D

LSFR is obtained by deleting the first bit

of k and the last bit of
i

v and XORing the two resulting 127-bit binary

strings. Secondly, the cipher is run to produce an output string of length 255
bits. For the second application of the cipher, the first 128 bits of this output

string are used to form the initial state of
C

LSFR and the remaining 127 bits

are used to form the initial state of
D

LSFR . The cipher is run again to

produce an output string of length 255 bits. The output from this second

application is used to form the initial state of the keystream generator at the

beginning of keystream production. As previously, the first 128 bits form the

initial state of
C

LSFR , and the remaining 127 bits form the initial state of

D
LSFR .

Ed Dawson & Leonie Simpson

140 International Journal of Cryptology Research

In the rare event that either register is initialised to an all zero state, then that
initial state is declared invalid. All distinct valid initial states produce

different keystreams, and there are no known weak keys.

LILI-II Keystream Properties

Firstly, keystream sequences produced by the LILI-II keystream generator

have a period of ()()128 127 255
2 1 2 1 2− − ≈ . Note that this period implies that

each distinct initial state results in the production of a distinct keystream.

Also, this greatly exceeds the length of any practical plaintext, rendering any
attacks based on a short period infeasible. Secondly, the linear complexity of

these keystream sequences is conjectured to be at least
175

2 , so that at least
176

2 consecutive bits of known plaintext are required for the Berlekamp-

Massey attack to be successful. This is an infeasible amount of text to
collect. Finally, the distribution of ones and zeros in the keystream is the

same as that in the underlying LSFR sequence.

LILI-II Attack Resistance

The large internal state size of 127 + 128 = 255 bits causes any of the

tradeoffs for the general time-memory-data tradeoff attacks to be worse than

exhaustive key search. For example, for the time-memory attacks described
in (Babbage, 1995), where the product of the time and memory requirements

is equivalent to the state space, and the amount of keystream required is

equivalent to the time, a 128 127 2552 .2 2= tradeoff could be used, although this

requires time equivalent to exhaustive key search, and an excessive amount

of memory and known keystream.

In any case, the use of the initialisation scheme (the key-loading/re-keying
algorithm) to expand the 128-bit secret key into a 255 bit initial state renders

the time-memory attacks on LILI-II infeasible, as their performance is at

best, no better than exhaustive key search. By employing the LILI-II

algorithm itself during re-keying, we take advantage of both the known
security properties of the algorithm and also its fast implementation. We

have considered also the possibility of related key attacks using multiple key-

streams, but can identify no attack in the re-keying scenario which performs
better than exhaustive key search.

The large internal state size also provides resistance against the standard

divide and conquer attacks, which target one or other of the LSFRs . We

conjecture that the complexity of any divide and conquer attacks on LILI-II

LILI to Dragon : From Bit-Based to Word-Based Stream Chipers

 International Journal of Cryptology Research 141

exceeds
128

2 operations, and also requires a substantial amount of known

keystream bits.

Taken together, these results indicate that LILI-II is a secure synchronous

stream cipher, in that there are no currently known attacks on the cipher

which are more feasible than exhaustive key search.

LILI Keystream Generator Implementation Considerations

There are several internal differences between the implementation of LILI-

128 and that of LILI-II. These differences include using Galois structure

(rather than traditional Fibonacci style), for the LSFR state transitions, the

increase in the size of the registers and increasing the number of inputs to the

filter function from 10 to 12. These aspects have different effects on the
speed of the design in software. LILI-II is less efficient in software than

LILI-128 mainly due to the larger LSFRs and larger Boolean function which

are used in the design to increase security. However, in hardware LILI-II

offers the same high speed as LILI-128.

DRAGON KEYSTREAM GENERATOR

Dragon (Chen, et al. 2005) is a word-based stream cipher designed

with both security and efficiency in mind. The cipher was submitted to the
ECRYPT eSTREAM project in April, 2005 and is currently one of the Phase

2 Focus group ciphers. Dragon is constructed using a single word based non-

linear feedback shift register (NLFSR) and a nonlinear filter function with

memory. Dragon uses a variable length key (128 or 256 bits) and
initialisation vector of 128 or 256 bits, and produces 64 bits of keystream per

iteration. At the heart of Dragon are two highly optimised 8 × 32 s-boxes.

Dragon uses simple operations on 32-bit words to provide a high degree of
efficiency in a wide variety of environments, making it highly competitive

when compared with other word based stream ciphers.

DRAGON description

Dragon is constructed using a single word-based NLFSR. The register
consists of thirty-two stages, each of which holds a 32-bit word. Thus the

length of the register is 1024 bits. There is also a 64-bit memory component,

M, so the total internal state size is 1088 bits. The state update function, F, is

used in both key setup and keystream generation operations. The cipher can
be used with either 128-bit key and initialisation vectors (DRAGON-128), or

with 256-bit key and initialisation vectors (DRAGON 256).

Ed Dawson & Leonie Simpson

142 International Journal of Cryptology Research

The F function is a reversible mapping from 192 bits (six 32-bit words) to
192 bits. That is, it takes six 32-bit words as input, and produces six 32-bit

words as output. Let a, b, c, d, e and f denote the six 32-bit words of input to

F and a’, b’, c’, d’, e’ and f’ denote the six 32-bit words output. The F

function has six component functions:
1, 2, 3, 1, 2,

G G G H H and 3H . The G and H

subfunctions, constructed from two 8x32-bit S-boxes, are used to provide

algebraic completeness and high nonlinearity. Details of the subfunctions

and the S-boxes are given in (Chen, et al. 2005). A network of modular
additions (addition modulo 2

32
, denoted +) and binary additions (addition

modulo 2, denoted ⊕) are used for diffusion in the F function. The F
function can be divided into three parts: pre-mixing, substitution and post-

mixing. Each part is designed for parallelisation, permitting speedy

operation. These layers are detailed below.

In the premixing layer, two sets of operations can be performed in parallel:

Set 1: B b a= ⊕ d d c= ⊕ f f e= ⊕

Set 2: C c b= + e e d= + a a f= +

This is followed by the substitution layer (applying the s-boxes):

Set 3: ()1
D d G a= ⊕ ()2

f f G c= ⊕ ()3
b b G e= ⊕

Set 4: ()1
A a H b= ⊕ ()2

c c H d= ⊕ ()3
e e H f= ⊕

A final layer of mixing operations is performed:

Set 5: 'd d a= + 'f f c= + 'b b e= +

Set 6: 'c c b= ⊕ 'e e d= ⊕ a’=a ⊕ f

Dragon has a simple key and re-keying strategy, using the key k and a

known initialisation vector
i

v . We briefly outline the rekeying scheme for

Dragon -128 here. More extensive details, and the re-keying scheme for

Dragon-256 may be obtained from (Chen, et al. 2005). The 1024-bit NLFSR

is divided into eight 128-bit words, labelled 0W to 7W . This is initially filled

by concatenating the key, the initialisation vector, and simple functions of

these such as
i

k k v= ⊕ . The memory component is initialised to a constant

value. Following this, 16 iterations of the F function are performed, updating

both the NLFSR and M in each round. The use of existing cipher

LILI to Dragon : From Bit-Based to Word-Based Stream Chipers

 International Journal of Cryptology Research 143

components in the initialisation scheme simplifies analysis and increases

implementation efficiency.

For keystream generation, inputs are taken from six of the thirty-two 32-bit

stages of the NLFSR. The selected stages are 0, 9, 16, 19, 30, and 31. These

inputs form a full positive difference set. The 64-bit memory component M
acts as a counter during keystream generation, with the initial value of M for

keystream generation being the value of M at the end of the initialisation

process. Inputs from the six 32-bit NLFSR stages and from M are used to
form the six 32-bit inputs to the F function. Four of the six 32-bit outputs are

used to update the NLFSR and the remaining two are used to produce the 64-

bit output. This is repeated to produce the desired length of keystream.

DRAGON Design Principles

The key setup and keystream generation of Dragon both use the F function,
for ease of implementation and for increased efficiency. However, the

operations performed in key setup are deliberately different to those in

keystream generation, so that the mapping of internal state to feedback is
different. Another design consideration during initialisation was to ensure

that no 256-bit key-initialisation vector pair will result in an initial state for

Dragon that could be produced by an arbitrary 128-bit pair. This precludes a
crypanalyst reducing the search space for a 256 bit key to that of a 128-bit

key.

DRAGON Keystream Properties

Given the use of a 1024-bit NLFSR, the expected period for the internal state

is around
512

2 , assuming a pseudo-random mapping. With the additional

memory component the expected period is increased to
576

2 . For

cryptographic use, a clear lower bound on the period is more important than

an average value. The inclusion of the 64-bit counter, M, provides a

guaranteed lower bound on the period of
64

2 . Re-keying after the production

of
64

2 bits of keystream is recommended, and avoids the possibility of

keystream collision attacks.

Statistical tests provided by the CRYPT-X package were performed on the

keystream produced by the Dragon cipher. The frequency, binary derivative,
change point, subblock and runs tests were performed on 30 streams of

Dragon output, each of length eight megabytes. The sequence and linear

complexity tests were executed for the thirty streams, each of length two
hundred kilobytes. The Dragon keystream generator passed all of these tests.

Ed Dawson & Leonie Simpson

144 International Journal of Cryptology Research

Thus keystream produced by the Dragon generator appears to be suitably
pseudo-random.

Weak keys are those that bypass some operations of the cipher, that is, those

keys for which the operations have negligible effect in calculating the

feedback or the output. Dragon is designed to avoid weak keys. Use of the

large word-based NLFSR and of functions with no fixed points has avoided
the need to place restrictions on the internal state values (for LFSRs, it is

common to forbid the all zero state, and this needs to be incorporated into re-

keying schemes). Also the 16 iterations of the state update function during
ke-keying ensures that specific differentials cannot be traced through all

rounds. This provides strong evidence that there are no weak keys for

Dragon.

Possible Attacks on the DRAGON Keystream Generator

The use of initialisation vectors to produce multiple keystreams from a single

master key gives the cryptanalyst the possibility of using multiple

keystreams and the corresponding known initialisation vector to deduce

information about the underlying master key. This may be possible if the
initial state at the start of keystream generation can be readily expressed in

terms of the unknown key bits and the known initialisation vector bits, so

that the effect of small known changes in the initial state can be readily
observed. However, the re-keying scheme for Dragon mixes each key bit into

all words of the initial state by applying the highly nonlinear F function in

each of 16 iterations. During initialisation, the F function output is used to

update both the NLFSR and the memory, so the value of the memory is
difficult to determine after the first iteration. The contents of the memory

unit are also incorporated into the inputs to the F function during

initialisation, increasing the difficulty for an attacker.

Time-Memory tradeoff attacks rely on precomputation to reduce the effort
required for a key recovery attack. In a precomputation phase, the attacker

calculates a table of keys or internal states and the associated keystream

prefix. In the real time attack phase, the attacker attempts to match observed
keystream to table entries, and thus recover the internal state and/or key bits.

The large internal state space (1088 bits) of the Dragon keystream generator

in comparison to the key size, coupled with the initialisation scheme means

that an attacker would have to precompute a table for each initialisation
vector. Any tradeoff of time, memory or keystream requirement will be

much worse than exhaustive key search.

LILI to Dragon : From Bit-Based to Word-Based Stream Chipers

 International Journal of Cryptology Research 145

The stages of the NLFSR used to provide input to the state update function

form a full positive difference set. This is useful in providing resistance to

guess and determine style attacks, as for any guessed subset of inputs at a

fixed point in time, at most one of these values will also be an input at the
next time interval. Thus an attacker must guess increasingly more input

values. The rapid increase in the number of possible guess pathways makes

this approach infeasible. This attack strategy cannot be more effective than
exhaustive key search.

A distinguishing attack is an attack in which the output sequence from a

stream cipher can be statistically distinguished from a truly random

sequence. That is, there is some property of the keystream sequence that an

attacker can identify which indicates that the sequence has been produced by
a particular pseudorandom keystream generator. Englund and Maximov

(2005) describe a distinguishing attack against Dragon-256 which requires
155

2 keystream words produced from a single key-initialisation vector pair.
This keystream requirement greatly exceeds the permitted maximum

keystream length of
64

2 bits, and so is of theoretical interest only, and does

not constitute a security compromise. There are two variants of the attack,

one with complexity of
187

2 operations and memory requirements of
32

2 words, and a second with complexity of
155

2 operations and memory

requirements of
96

2 words. Disregarding the excessive keystream

requirement, neither attack is better than exhaustive keysearch for Dragon-
128. In any case, the attack remains a distinguishing attack, and cannot be

extended to key recovery.

Dragon Keystream Generator Implementation Considerations

Dragon is designed to be efficient in both software and hardware, in terms of
both throughput and implementation footprint. The 32-bit word size was

selected to match that of the ubiquitous Intel Pentium family, as it leads to

the best software efficiency on this platform. The design allows a high

degree of parallelisation in hardware, as the operations can be divided into
three groups, each operating on two inputs.

IMPLEMENTATION

The bit-based LILI keystream generators and the word-based Dragon

design have very different structures, with an increase in complexity

accompanying the shift to word-based design. Both designs can be
implemented in either hardware or software. The bit-based design of the

Ed Dawson & Leonie Simpson

146 International Journal of Cryptology Research

LILI generators provide a better performance in hardware, whereas the word-
based Dragon generator is much faster in software, as expected. For

comparison, software performance figures on a 3.2 GHz Intel Pentium 4 are

given in the following table for the keystream generators LILI-128, LILI-II
and Dragon, and for the block cipher AES. AES is the current block cipher

encryption standard. As there is no current stream cipher standard, and a

block cipher can be used (in an appropriate mode) for keystream generation,

a useful stream cipher should be able to provide greater throughput than AES
to be considered useful. On this basis, we recommend the use of Dragon

rather than LILI for software implementation.

Keystream generator Throughput

LILI-128 72 Mbps

LILI-II 66 Mbps

Dragon 3820 Mbps

AES 1828 Mbps

CONCLUSION

In this paper we described and discussed the LILI family of

keystream generators (including the particular instances LILI-128 and LILI-

II) and also the Dragon keystream generator, submissions to NESSIE and

eSTREAM respectively. The principles on which design choices were based
are outlined.

The progression of the designs over time shows the changing

landscape for stream cipher design. Most keystream generator designs for

stream ciphers proposed prior to the year 2000 were bit-based designs, like
the LILI family. Commonly, they used the key directly as the initial state,

and re-keying to make use of a secret master key with multiple known

initialisation vectors was uncommon. The application of stream ciphers to
new environments such as mobile telephony and internet applications has

changed this. The call for initialisation and re-keying schemes to be added to

the NESSIE submissions reflects the importance of these aspects in design

specifications

The increasing application of encryption in software rather than
hardware has been a driving force in the move toward word-based designs.

Many of the designs submitted to the recent eSTREAM project are word-

based stream ciphers, like Dragon. The only bit-based designs submitted to
eSTREAM are submissions under the hardware profile.

LILI to Dragon : From Bit-Based to Word-Based Stream Chipers

 International Journal of Cryptology Research 147

As the complexity of proposed stream cipher designs increases, it

becomes difficult to provide theoretical support for security claims, even

regarding basic security properties. Both LILI and Dragon designs have been

subject to public scrutiny. Both LILI-II and Dragon ciphers are efficient and
secure keystream generators for stream ciphers. We recommend the use of

LILI-II for hardware applications and Dragon for software implementation.

Further investigation into the security provided by these designs is
welcomed.

REFERENCES

Babbage, S. 1995. A space/time trade off in exhaustive search attacks on

stream ciphers. European Convention on Security and Detection,

{IEE} Conference Publication No. 408, May 1995.

Biryukov, A. and Shamir, A. 2000. Cryptanalytic Time/Memory/Data

tradeoffs for stream ciphers. Asiacrypt 2000, Vol. 1976 of Lecture
Notes in Computer Science, pp. 1 - 13, Springer-Verlag.

Clark, A., Dawson, E., Fuller, J., Golic, J., Lee, H., Millan, W., Moon, S. and

Simpson, L. 2002. The LILI-II Keystream Generator. Australasian
Conference on Information Security and Privacy -ACISP 2002, vol

2384 of Lecture Notes in Computer Science, pp. 25 - 39, Springer-

Verlag.

Chen, K., Henricksen, M., Millan, W., Fuller, J., Simpson, L., Dawson, E.,

Lee, H. and Moon, S. 2005. Dragon: A Fast Word Based Stream
Cipher. Information Security and Cryptology – ICISC2004. vol 3506

of Lecture Notes in Computer Science, pp.35 - 50, Springer-Verlag.

Also ECRYPT eSTREAM submission, available at:

http://www.ecrypt.eu.org/stream/dragonp2.html

Courtois, N. and Meier, W. 2003. Algebraic attacks on stream ciphers with

linear feedback. In Advances in Cryptology – EUROCRYPT 2003, vol
2656 of Lecture Notes in Computer Science, pp. 176 - 194, Springer-

Verlag.

Dawson, E., Clark, A., Golić, J, Millan, W., Penna, L. and Simpson, L. 2000.
The LILI-128 Keystream Generator. NESSIE submission, in the

proceedings of the First Open NESSIE Workshop (Leuven, 2000) and

available at: http://www.cryptonessie.org

Ed Dawson & Leonie Simpson

148 International Journal of Cryptology Research

Englund, H. and Maximov, A. 2005. Attack the Dragon. ECRYPT
eSTREAM submission, available at:

http://www.ecrypt.eu.org/stream/papersdir/ 062.pdf. submitted

September 2005.

Golić, J. 1997. Cryptanalysis of Alleged A5 stream cipher. Advances in

Cryptology – EUROCRYPT'97, vol 1233 of Lecture Notes in

Computer Science, pp. 239-255. Springer-Verlag.

Massey, J. 1969. Shift-Register Synthesis and BCH Decoding. IEEE Trans.

Inform. Theory, IT-15:122-127, January 1969.

Molland, H and Telleseth, T. 2004. An improved correlation attack against

irregular clocked and filtered keystream generators. In Advances in

Cryptology – CRYPTO 2004, vol 3152 of Lecture Notes in Computer
Science, pp. 373-389, Springer-Verlag.

NESSIE. 1999. New European Schemes for Signatures, Integrity and
Encryption. Project within the Information Society Technologies

(IST) Programme of the European Commision.

URL: https://www.cosic.esat.kuleuven.be/nessie/

Rueppel, R. 1986. Analysis and design of stream ciphers. Springer-Verlag,

Berlin.

Saarinen, M. 2002. A Time-Memory Tradeoff Attack Against LILI-128.’

Fast Software Encryption – FSE 2002 vol 2365 of Lecture Notes in

Computer Science, pp. 231-236, Springer-Verlag.

Siegenthaler, T. 1985. Decrypting a Class of Stream Ciphers Using

Ciphertext Only.’ IEEE Trans. Computers, C-34(1): 81--85.

Simpson, L., Dawson, E. Golić, J and Millan, W. 2000. LILI Keystream

Generator’.Proceedings of the Seventh Annual Workshop on Selected

Areas in Cryptology – SAC'2000, volume~2012 of Lecture Notes in
Computer Science, pp. 248-261, Springer-Verlag.

