
International Journal of Cryptology Research 1 (1): 21-32 (2009)

Java Implementation for Identity-Based Identification

1
Syh-Yuan Tan,

1
Swee-Huay Heng,

1
Bok-Min Goi,

1
Ji-Jian Chin

and
2
SangJae Moon

1
Multimedia University

2
Kyungpook University

Email: syhyuan@yahoo.com

ABSTRACT

There are a lot of papers on cryptography implementation but mostly on encryption
and signature schemes. In this paper, we provide the discussion on the
implementation of five selected Identity-Based Identification (IBI) schemes, namely,
the Schnorr IBI, the Bellare-Namprempre-Neven IBI, the Okamoto IBI, the Cramer-
Shoup IBI, and the Guillou-Quisquater IBI. C programming language is a preferable
platform in cryptography implementation due to its low running time, however, C is
platform dependent and changes are needed each time the code is experimented on
different operating systems. Thus, we opt for Java in implementing these selected
schemes. Though the run time in Java is slightly higher (caused by Java Virtual
Machine) than C, it is more convenient and flexible for us to try the same piece of
code in different operating systems in future.

INTRODUCTION

An identification scheme assures one party (through acquisition of
corroborative evidence) of both the identity of a second party involved, and
that the second party was active at the time the evidence was created or
acquired. In other words, identification protocol is an interactive process that
enables a prover with a private key to identify himself to a verifier with the
corresponding public key. Common applications of identification are
Identity Card, ATM Card, Credit Card, E-voting, E-purse, etc. Meanwhile,
Identity-based (ID-based) cryptography is a concept formalized by Shamir
in 1984 [Sh85] where the public key is replaced by the user’s public identity
string, ID (name, email address, phone number etc.). The advantage of ID-
based cryptography is no keys or certificates storage and data managing and
searching operation are therefore eliminated. But the disadvantage is key
escrow problem since it needs a trusted third party called the private key
generator (PKG) to generate user’s private key. The compromise of PKG’s
master-key is more disastrous than the compromise of the traditional
Certification Authority’s signing key. However, this key escrow feature is
useful in some closed group operations.

In this paper, we provide the discussion on the implementation of five

selected Identity-Based Identification (IBI) schemes, namely, the Schnorr
IBI, the Bellare-Namprempre-Neven IBI, the Okamoto IBI, the Cramer-

Syh-Yuan Tan et al.

International Journal of Cryptology Research

22

Shoup IBI, and the Guillou-Quisquater IBI. These schemes are implemented
using Java Cryptography Architecture (JCA), the Java security framework of
Java Security API in Java Standard Edition 6.0 (J2SE6). JCA was designed
under the following principles: implementation independence,
implementation interoperability and algorithm extensibility. The
implementation independence principle is significant in this implementation
job as most of the needed algorithms were implemented inside provider.
This means we need not code ourselves the key pair generators, hash
(Message Digest), multiplicative inverse, etc. Until J2SE 6, JCA have not
provided key generator algorithm for Elliptic Curve Cryptography (ECC)
but Java does support the library of other providers for ECC or users can
explicitly define their own favored parameters.

The simulations of all the probabilistic polynomial time algorithms of

the chosen IBI schemes are run on a single computer with the following
specifications: Intel Pentium M 1.6Ghz, 512RAM, Windows XP Service
Pack 2. These simulations can sufficiently represent the real-world
applications as all algorithms in the chosen IBI schemes are taken into
consideration. The measured running time of the algorithms is the
computation time of the schemes, which is easier to be controlled as
compared to communication time. Communication time is not taken into
consideration here as it is hardware and environment dependent. The run
time for the single basic mathematical operations will also be shown besides
the total execution time of each algorithm of the schemes. The result shown
in the paper is the average of 1000 executions with random 512-bit input
and timing is recorded in nanoseconds using Java provided nanoTime()
function.

We organize the rest of the paper as follows. In Section 2, we give the

definition of IBI and schemes chosen. In Section 3, we show the
implementation result and followed by discussion in Section 4. Finally, we
conclude in Section 5.

IDENTITY-BASED IDENTIFICATION

Definition
IBI was first rigorously defined and formalized in year 2004 independently
by Kurosawa and Heng [KH04] and Bellare et. al. [BNN04]. It consist of
three probabilistic polynomial time (PPT) algorithms, which are setup

algorithm ()S , extract algorithm ()E , and Identification Protocol ()P :

Java Implementation for Identity-Based Identification

International Journal of Cryptology Research

23

- Setup. S takes a security parameter 1k and generates system
parameters params and the master-key. The system parameters will
be publicly known while master-key will be kept by PKG only.

- Extract. E takes as input the params, master-key and ID. It returns
the user private key.

- Identification Protocol. P takes as input params, ID, user private

key while V takes as input params and ID. After 3 move protocols

which are commit, challenge and response between P and V , V
makes the decision either accepts or reject the user.

Notion of Security
Three types of attacks are considered on the honest, private key equipped
prover, [BNN04, KH04]:

• Passive attack – the adversary can eavesdrop and he is in
possession of transcripts of conversations between the provers and
the verifiers.

• Active attack – the adversary first plays the role of a cheating
verifier, interacting with the provers several times before the
impersonation.

• Concurrent attacks – the adversary first plays the role of a cheating
verifier, interacting with the provers several times concurrently
before the impersonation.

Selected IBI Schemes

i. Schnorr IBI [Heng04]

- Setup. On input 1k , generate two large primes p and q of size k

such that ()1q p − , and an element
p

g Z∈ of order q , where g is

a generator of G , a subgroup of *
p

Z of order q . Choose a

cryptography hash function { }: 0,1 qH G G Z
∗
× × → . Choose

q
s Z∈ randomly and compute sv g−

≡ mod p . The system

parameters params = (), , , ,p q g v H and the master-key is s which

is known to the PKG only.

- Extract. Given a public identity ID, choose
q

t Z∈ randomly and

compute ,mod pgX
t

≡),,,(vXIDH≡α .modqstY α+≡ The user

private key is (),Yα .

- Identification Protocol (secure in passive attack).

Syh-Yuan Tan et al.

International Journal of Cryptology Research

24

1. P first computes YX g vα
≡ mod p . P next chooses

q
r Z∈

randomly and computes modrx g p≡ . P finally sends

(),X x to V .

2. V chooses
q

c Z∈ randomly and sends c to P .

3. P computes mody r cY q≡ + and sends y toV .

4. V accepts if and only if () mod
c

y
g x X v p

α
≡ , where

(), ,H ID X vα = .

- Identification Protocol (secure in active and concurrent attack). The
following protocol is executed qk 2log= times in sequence:

1. P first computes modYX g v pα
≡ . P next chooses r∈Zq

randomly and computes x ≡ g
r mod p. P finally sends (X, x) to

V .

2. V chooses { }0,1c∈ randomly and sends c to P .

3. P computes mody r cY q≡ + and sends y to V .

4. V accepts if and only if () mod
c

y
g x X v p

α
≡ ,

where (), ,H ID X vα = .

ii. Okamoto IBI [BNN04]

- Setup. On input 1k , generate two large primes p and q of size

k such that ()1q p − , and an element
p

g Z∈ of order q , where

g is a generator of G , a subgroup of
p

Z
∗ of order q . Choose a

cryptography hash function { }: 0,1 qH G G Z
∗
× × → . Choose

1 2 q
x x Z∈ randomly and compute 1 2 modx xX g g p− −

≡ . The system

parameters params = ()1 2, , , , ,p q g g X H and the master-key is

1 2,x x which is known to the PKG only.

- Extract. Given a public identity ID, choose 1 2,
q

r r Z∈ randomly

and compute pggR
rr mod21

21≡ , qxIRHrs mod)||(111 ⋅−−≡ ,

qxIRHrs mod)||(222 ⋅−−≡ . The user private key is ()1 2, ,R s s .

- Identification Protocol.

1. P first computes pggS
ss mod21

21

−−
≡ . P next chooses

1 2,
q

y y Z∈ randomly and computes pggY
yy mod21

21

−−
≡ . P

finally sends (), ,R S Y to V .

Java Implementation for Identity-Based Identification

International Journal of Cryptology Research

25

2. V chooses
q

c Z∈ randomly and sends c to P .

3. P computes qcsyz mod111 +≡ , qcsyz mod222 +≡ and sends

1 2,z z toV .

4. V accepts if and only if pSggY
czz mod21

21≡ and

)(
mod

H R ID
R SX p≡ .

iii. Bellare-Namprempre-Neven IBI [BNN04]

- Setup. On input 1k , generate two large primes p and q of size

k such that ()1q p − , and an element
p

g Z∈ of order q , where

g is a generator of G , a subgroup of
p

Z
∗ of order q . Choose a

cryptography hash function { }: 0,1 qH G G Z
∗

× × → . Choose

q
x Z∈ randomly and compute modxX g p≡ . The system

parameters params (), , , ,p q g X H= and the master-key is x

which is known to the PKG only.

- Extract. Given a public identity ID, choose
q

r Z∈ randomly and

compute ()mod , mody
R g p s r H R ID x q≡ ≡ + . The user

private key is (),R s .

- Identification Protocol.

1. P first computes modsS g p≡ . P next chooses
q

y Z∈

randomly and computes modyY g p≡ . P finally sends

(), ,R S Y to V .

2. V chooses
q

c Z∈ randomly and sends c to P .

3. P computes modz y cs q≡ + and sends y toV .

4. V accepts if and only if z cg YS≡ mod p and

()
mod

H R ID
S RX p≡ .

iv. Cramer-Shoup IBI [Heng04]

- Setup. Two random ,k -bit primes p and q are chosen, where

2 1p p= + and ,2 1q q= + , with both ,p and ,q prime. Let

N pq= . Choose ,
N

h x QR∈ and ()1k + -bit prime ,b randomly.

Choose a collision-resistant hash function H . The system

parameters params (),, , , ,N h x b H= and the master-key is (),p q .

Syh-Yuan Tan et al.

International Journal of Cryptology Research

26

- Extract. Given a public identity { }0,1ID
∗

∈ , a random ()1k + -

bit prime ,b b≠ is chosen, and a random ,

N
y QR∈ is chosen. The

equation
(),

mod
H xb

y xh N≡ mod N is solved for y , where ,x

satisfies the equation () ()
,

, , mod
b H ID

y x h N≡ . The user private

key is (),, ,b y y .

- Identification Protocol (secure in passive attack).

1. P chooses
q

s Z∈ randomly and computes modbt s N≡ . P

sends (),, ,b y t to V .

2. V chooses { }0,1,..., 1c b∈ − randomly and sends c to P .

3. P computes cz sy≡ mod N and sends z to V .

4. V accepts if and only if
()()

,

mod
c

H xbz t xh N≡ ,where

() () ()
,

, , mod
b H ID

x y h N
−

≡ .

- Identification Protocol (secure in active and concurrent attack).
The following protocol is executed for pk log= times:

1. P chooses
q

s Z∈ randomly and computes modbt s N≡ . P

sends (),, ,b y t to V .

2. V chooses { }0,1c∈ randomly and sends c to P .

3. P computes modcz sy N≡ and sends z toV .

4. V accepts if and only if
()()

,

mod
c

H xbz t xh N≡ , where

() () ()
,

, , mod
b H ID

x y h N
−

≡ .

v. Guillou-Quisquater IBI [Heng04]

- Setup. Run RSA ()1k to obtain (), ,N a b where b is a large prime.

Choose a cryptographic hash function { }: 0,1
N

H Z
∗ ∗

→ . The

system parameters params (), ,N b H= and the master-key is a

which is know to the PKG only.
- Extract. Given a public identity ID, compute the user private key

() mod
a

d H ID N≡ .

- Identification Protocol.

Java Implementation for Identity-Based Identification

International Journal of Cryptology Research

27

1. P chooses
N

r Z ∗
∈ randomly and sends modbx r N≡ to V .

2. V chooses { }0,1,..., 1c b∈ − randomly and sends c to P .

3. P computes modCy rd N≡ and sends y to V .

4. V accepts if and only if that () mod
Cby xH ID N≡ .

IMPLEMENTATION RESULTS

The following depicts the computational complexity of each scheme:

TABLE 1: Complexity comparison

Schnorr

[Heng04]
BNN

[BNN04]
Okamoto
 [BNN04]

CS
[Heng04]

GQ
[Heng04]

Setup Cost 2
e m

T T+
e

T 2
e m

T T+ 2
m a QR

T T T+ + m a i
T T T+ +

Extract Cost
6 4

e m

h a

T T

T T

+ +

+

e m

h a

T T

T T

+ +

+

2 2

2

m h

a

T T

T

+

+

4 2

2 2

e m

h i

T T

T T

+ +

+

e h
T T+

Identification
Cost

6 4
e m

h i a

T T

T T T

+ +

+ +

5 3
e m

h a

T T

T T

+ +

+

8 7

2

e m

h a

T T

T T

+ +

+

8 3

2

e m

h i

T T

T T

+ +

+

4 2
e m h

T T T+ +

e
T = exponentiation time

h
T = hash time

m
T = multiplication

time

m
T = addition time

i
T = multiplicative inverse time

QR
T = quadratic

residue time

TABLE 2: Operation Timing

Operations Syntax 512-bit (ns) 1024-bit (ns)
Exponentiation* modPow

(BigInteger pow, BigInteger mod)
8,155,056 15,942,848

Multiplication multiply
(BigInteger val)

10,781 62,394

Multiplicative
Inverse*

modInverse
(BigInteger mod)

525,584 1,194,377

SHA-1 MessageDigest.getInstance
(“SHA1”)

33,784 39,010

SHA-512 MessageDigest.getInstance
(“SHA-512”)

58,730 883,922

Modular$ Mod
(BigInteger mod)

26,132 54,956

Addition Add
(BigInteger val)

3,363 6,702

Quadratic
Residue

jacobi(BigInteger val, BigInteger n) 6,053,811 6,280,951

*modulo is random 512-bit number $value size is the double of modulo bit-
length

Syh-Yuan Tan et al.

International Journal of Cryptology Research

28

There are times where we wish to have all the operations finished
executed before ending the final value with a single modular operation.
However, this ideal case cannot be implemented because in JCA, syntax of
exponentiation comes together with a modular operation as shown in Table
2. This cannot be avoided and thus affect the efficiency. The following are
parameters used in each scheme:

TABLE 3 : Schemes Parameters

Scheme Parameters
Setup: DSA KeyPairGenerator
Hash: SHA-1

Schnorr,
BNN,

Okamoto ID: user@mmu.edu.my
Setup: RSA KeyPairGenerator
Hash: SHA-512
Quadratic Residue: Jacobi symbol

CS

ID: user@mmu.edu.my
Setup: RSA KeypairGenerator
Hash: SHA-512 GQ

ID: user@mmu.edu.my

J2SE6 does not provide algorithm to find a quadratic residue modulo

neither a prime nor a composite number. In order to find the quadratic
residue modulo N (N is composite number) in CS scheme, we coded Jacobi
symbol algorithm as in [Fis06]. For other details of parameters mentioned,
kindly refer to [Java2]. We run the five schemes for 1000 times using the
parameters above with a 512-bit key and 1024-bit key independently on
Intel Pentium M 1.6 GHz, 512RAM, Windows XP Service Pack 2. We then
average the running time.

TABLE 4: Timing for 512-bit

 Setup
(ns)

Extract
(ns)

Identification [P]
(ns)

Identification [A&C]
(ns)

Schnorr 4,891,679 1,272,181 12,826,772 1,692,239,880
BNN 4,556,400 1,290,435 9,112,274 9,112,274

Okamoto 7,399,199 2,367,228 15,156,250 15,156,250
CS 552,521,647 119,084,865 96,400,380 8,452,845,999
GQ 84,823,200 6,849,624 1,149,553 1,149,553

 ns – nanosecond A&C – active and concurrent attack
 P – passive attack

Java Implementation for Identity-Based Identification

International Journal of Cryptology Research

29

TABLE 5: Timing for 1024-bit

 Setup
(ns)

Extract
(ns)

Identification
[P] (ns)

Identification
[A&C] (ns)

Schnorr 16,059,077 4,232,809 43,624,176 5,351,031,031
BNN 16,563,530 4,443,884 33,784,060 33,784,060

Okamoto 25,222,381 8,359,174 52,977,404 52,977,404
CS 7,829,626,400 1,608,030,778 952,885,593 441,142,435,428
GQ 516,212,870 44,216,585 3,503,753 3,503,753

 ns – nanosecond A&C – active and concurrent attack
 P – passive attack

From the results, GQ is the most efficient scheme and CS is the slowest

scheme. However, it is reasonable since CS scheme is proven secure in
standard model [CS00] and thus its tradeoff is the performance.

DISCUSSIONS

Comparing the complexity and running time, we notice that even the
complexity is about the same, timing result may vary a lot. The Extract and
Identification Protocol of Schnorr scheme varies on only a single inverse
operation but the timing has the difference of 11,554,591ns for 512-bit key.
This is because inverse operation is costly since it uses extended Euclidean
algorithm. However, the main concern is the bit-length of numbers instead
of the amount of operations. For instance, the Extract in GQ scheme has
only 2 operations but it takes more time than its Identification Protocol. The

valueα , ()H ID and N in Extract has bit-length about 512 on average while

value b in Identification Protocol is fixed to be 65537 with bit-length of 17

only. Consequently, bit-length of exponent value c in Identification Protocol

would be much smaller (compare toα) and thus the execution time of

modular operation (with respect to N) is reduced.

In Schnorr scheme, since the size of q is set to 160-bit despite of the

size of p , hash function SHA-1 is used in this scheme as its output is always

160-bit. In real world application, SHA-512 is recommended (SHA-1 is
theoretically broken [CR06]) but 512-bit hash value needs to go through a
modular operation for q is only 160-bit. For the scheme to be secure against

active and concurrent attack, the Identification Protocol is run for 2logk q=

times sequentially and { }0,1c ∈ [Heng04]. In BNN scheme, the hash function

issue is the same as in Schnorr scheme. Since it is proven to be secure
against active and concurrent attacks as in scheme secured against passive
attack [BNN04], no change is needed on Identification Protocol. Similar
with BNN scheme, no change is needed on Identification Protocol for
Okamoto scheme.

Syh-Yuan Tan et al.

International Journal of Cryptology Research

30

For CS scheme, as suggested in [CS00], optimization can be done by

letting moda
x h N≡ for a random number α mod ''qp , where α is stored in

the secret key. Thus
(),

mod
H xb

y xh N≡ will become
(),

mod
a H xb

y h N
+

≡ .

Let d be the inverse of b mod ''qp , then
(),

mod
da dH x

y h N
+

≡ . This saves

time by replacing
m e

T T+ with
m a

T T+ in Extract and replacing
m

T with
m

T in

Identification Protocol. For the scheme to secure against active and
concurrent attack, the identification protocol is run for k times in sequence

where 2logk p= or equivalently 2logk q= and { }0,1c∈ [Heng04]. Similar

with BNN and Okamoto schemes, GQ scheme is proved to be secure against
active and concurrent attacks as in the scheme secure against passive attack
[Heng04] and thus no change is needed on its Identification Protocol.

CONCLUSION

We had provided a brief overview of IBI and obtain the running time
for Schnorr, Bellare-Namprempre-Neven, Okamoto, Cramer-Shoup and
Guillou-Quisquater IBI. We had also discussed on their implementation and
performance.

ACKNOWLEDGEMENT

This research was supported by the Malaysia e-Science Fund (01-02-
01-SF0032) and the Ministry of Knowledge Economy (MKE) of Korea,
under the ITRC support program supervised by the IITA (IITA-2008-
C1090-0801-0016).

REFERENCES

[BNN04] M. Bellare, C. Namprempre, G Neven. 2004. Security Proofs for
Identity-Based Identification and Signature Schemes.
Advances in Cryptology – EUROCRYPT 2004, LNCS 3027.

[CR06] Christophe De Cannière, Christian Rechberger. 2006. Finding

SHA-1 Characteristics: General Results and Applications.
ASIACRYPT 2006, LNCS 4284, 1-20.

[CS00] R. Cramer, V. Shoup. 2000. Signature Schemes Based on the

Strong RSA Assumption. IBM Research Report RZ 3038.

Java Implementation for Identity-Based Identification

International Journal of Cryptology Research

31

[Ed04] Kossi D. Edoh. 2004. Elliptic Curve Cryptography: Java
Implementation. InfoSecCD Conference ’04

[Fis06] M. J. Fischer. 2006. Cryptography and Computer Security:

Lecture Notes 13, Yale University: Department of Computer
Science, http://zoo.cs.yale.edu/classes/cs467/2006f/attach/
ln13.html.

[GQ88] L. Guilloi and J. J. Quaisquater. 1988. A “paradoxical” identity-

based signature scheme resulting from zero-knowledge.
Advances in Cryptology – CRYPTO ’88, LNCS Vol. 403.

[Heng04] Heng Swee Huay. 2004. Design and Analysis of Some

Cryptographic Primitives. PhD Thesis, Tokyo Institute of

Technology.

[Hol06] David Holme. 2006. Inside the Hotspot VM: Clocks, Timer and

Scheduling Event - Part 1 – Windows. http://blogs.sun.com/
dholmes/entry/ inside_the_hotspot_vm_clocks.

[JS01] P.K. Janbandhu, M.Y. Siyal. 2001. Novel biometric digital

signatures for Internet-based applications. Information

Management & Computer Security, 9:5, 205-212.

[Java1] JavaTM Cryptography Architecture (JCA) Reference Guide for

JavaTM Platform Standard Edition 6.
http://java.sun.com/javase/6/docs/technotes/guides/security/
crypto/CryptoSpec.html.

[Java2] JavaTM Cryptography Architecture Standard Algorithm Name

Documentation for JavaTM Platform Standard Edition 6.
http://java.sun.com/javase/6/docs/technotes/guides/security/
StandardNames.html.

[KH04] Kaoru Kurosawa, Swee-Huay Heng. 2004. From Digital

Signature to ID-based Identification/Signature. Public Key

Cryptography – PKC’04, LNCS 2947, 248-261.

[KH05] Kaoru Kurosawa, Swee-Huay Heng. 2005. Identity-Based

Identification Without Random Oracles. ICCSA 2005, LNCS

3481, 603-613.

[Mao03] Wenbo Mao. 2003. Modern Cryptography: Theory and Practice.

Prentice Hall Professional Technical Reference, 186-192.

Syh-Yuan Tan et al.

International Journal of Cryptology Research

32

[MOV97] A. J. Menezes, P.C van Oorschot and S. A. Vanstone. 1997.

Handbook of Applied Cryptography. CRC Press.

[Nig06] Jeremy S. Nightingale. 2006. Comparative Analysis of Java

Cryptographic Libraries for Public Key Cryptography.
George Mason University: Department of Electrical and
Computer Engineering, http://ece.gmu.edu/courses/
ECE746/project/reports_2006/JAVA_MULTIPRECISION_
report.pdf

[Oka92] T. Okamoto. 1992. Provably secure and practical identification

schemes and corresponding signature schemes. Advances in

Cryptology – CRYPTO ’92. LNCS Vol. 740.

[Sc91] C. Schnorr. 1991. Efficient signature generation by smart cards.

Journal of Cryptology, vol. 4, pp. 161-174.

[SCA06] Michael Scott, Neil Costigan, Wesam Abdulwahab. 2006.

Implementing Cryptographic Pairings on Smartcards. CHES

‘06, LNCS 4249, 134-147.

[Sh85] Adi Shamir. 1985. Identity-based Cryptosystem and Signature

Schemes. Advances in Cryptology – Crypto ’84, LNCS vol.
196, 47-53.

