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ABSTRACT 

There are a lot of papers on cryptography implementation but mostly on encryption 
and signature schemes.  In this paper, we provide the discussion on the 
implementation of five selected Identity-Based Identification (IBI) schemes, namely, 
the Schnorr IBI, the Bellare-Namprempre-Neven IBI, the Okamoto IBI, the Cramer-
Shoup IBI, and the Guillou-Quisquater IBI. C programming language is a preferable 
platform in cryptography implementation due to its low running time, however, C is 
platform dependent and changes are needed each time the code is experimented on 
different operating systems. Thus, we opt for Java in implementing these selected 
schemes. Though the run time in Java is slightly higher (caused by Java Virtual 
Machine) than C, it is more convenient and flexible for us to try the same piece of 
code in different operating systems in future. 

 
 

INTRODUCTION 

An identification scheme assures one party (through acquisition of 
corroborative evidence) of both the identity of a second party involved, and 
that the second party was active at the time the evidence was created or 
acquired. In other words, identification protocol is an interactive process that 
enables a prover with a private key to identify himself to a verifier with the 
corresponding public key. Common applications of identification are 
Identity Card, ATM Card, Credit Card, E-voting, E-purse, etc. Meanwhile, 
Identity-based (ID-based) cryptography is a concept formalized by Shamir 
in 1984 [Sh85] where the public key is replaced by the user’s public identity 
string, ID (name, email address, phone number etc.). The advantage of ID-
based cryptography is no keys or certificates storage and data managing and 
searching operation are therefore eliminated. But the disadvantage is key 
escrow problem since it needs a trusted third party called the private key 
generator (PKG) to generate user’s private key. The compromise of PKG’s 
master-key is more disastrous than the compromise of the traditional 
Certification Authority’s signing key. However, this key escrow feature is 
useful in some closed group operations. 

 
In this paper, we provide the discussion on the implementation of five 

selected Identity-Based Identification (IBI) schemes, namely, the Schnorr 
IBI, the Bellare-Namprempre-Neven IBI, the Okamoto IBI, the Cramer-
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Shoup IBI, and the Guillou-Quisquater IBI. These schemes are implemented 
using Java Cryptography Architecture (JCA), the Java security framework of 
Java Security API in Java Standard Edition 6.0 (J2SE6). JCA was designed 
under the following principles: implementation independence, 
implementation interoperability and algorithm extensibility. The 
implementation independence principle is significant in this implementation 
job as most of the needed algorithms were implemented inside provider. 
This means we need not code ourselves the key pair generators, hash 
(Message Digest), multiplicative inverse, etc. Until J2SE 6, JCA have not 
provided key generator algorithm for Elliptic Curve Cryptography (ECC) 
but Java does support the library of other providers for ECC or users can 
explicitly define their own favored parameters. 

 
The simulations of all the probabilistic polynomial time algorithms of 

the chosen IBI schemes are run on a single computer with the following 
specifications: Intel Pentium M 1.6Ghz, 512RAM, Windows XP Service 
Pack 2. These simulations can sufficiently represent the real-world 
applications as all algorithms in the chosen IBI schemes are taken into 
consideration. The measured running time of the algorithms is the 
computation time of the schemes, which is easier to be controlled as 
compared to communication time. Communication time is not taken into 
consideration here as it is hardware and environment dependent. The run 
time for the single basic mathematical operations will also be shown besides 
the total execution time of each algorithm of the schemes. The result shown 
in the paper is the average of 1000 executions with random 512-bit input  
and timing is recorded in nanoseconds using Java provided nanoTime() 
function. 

 
We organize the rest of the paper as follows. In Section 2, we give the 

definition of IBI and schemes chosen. In Section 3, we show the 
implementation result and followed by discussion in Section 4. Finally, we 
conclude in Section 5. 

 

IDENTITY-BASED IDENTIFICATION 

Definition 
IBI was first rigorously defined and formalized in year 2004 independently 
by Kurosawa and Heng [KH04] and Bellare et. al. [BNN04]. It consist of 
three probabilistic polynomial time (PPT) algorithms, which are setup 

algorithm ( )S , extract algorithm ( )E , and Identification Protocol ( )P : 
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- Setup. S  takes a security parameter 1k  and generates system 
parameters params and the master-key. The system parameters will 
be publicly known while master-key will be kept by PKG only. 

- Extract. E  takes as input the params, master-key and ID. It returns 
the user private key. 

- Identification Protocol. P  takes as input params, ID, user private 

key while V  takes as input params and ID. After 3 move protocols 

which are commit, challenge and response between P  and V , V  
makes the decision either accepts or reject the user. 

 
Notion of Security 
Three types of attacks are considered on the honest, private key equipped 
prover, [BNN04, KH04]: 
 

• Passive attack – the adversary can eavesdrop and he is in 
possession of transcripts of conversations between the provers and 
the verifiers. 

• Active attack – the adversary first plays the role of a cheating 
verifier, interacting with the provers several times before the 
impersonation. 

• Concurrent attacks – the adversary first plays the role of a cheating 
verifier, interacting with the provers several times concurrently 
before the impersonation. 

 
Selected IBI Schemes 
 

i. Schnorr IBI [Heng04] 
 

- Setup. On input 1k , generate two large primes p and q  of size k  

such that ( )1q p − , and an element 
p

g Z∈  of order q , where g  is 

a generator of G , a subgroup of *
p

Z  of order q  . Choose a 

cryptography hash function { }: 0,1 qH G G Z
∗
× × → . Choose 

q
s Z∈ randomly and compute sv g−

≡ mod p . The system 

parameters params = ( ), , , ,p q g v H  and the master-key is s which 

is known to the PKG only. 

- Extract. Given a public identity ID, choose 
q

t Z∈ randomly and 

compute ,mod pgX
t

≡  ),,,( vXIDH≡α  .modqstY α+≡  The user 

private key is ( ),Yα . 

- Identification Protocol (secure in passive attack). 
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1. P first computes YX g vα
≡ mod p . P  next chooses 

q
r Z∈  

randomly and computes modrx g p≡ . P  finally sends 

( ),X x to V . 

2. V  chooses 
q

c Z∈ randomly and sends c  to P . 

3. P  computes mody r cY q≡ + and sends y  toV . 

4. V  accepts if and only if ( ) mod
c

y
g x X v p

α
≡ , where 

( ), ,H ID X vα = . 

- Identification Protocol (secure in active and concurrent attack). The 
following protocol is executed qk 2log= times in sequence: 

1. P  first computes modYX g v pα
≡ . P  next chooses r∈Zq 

randomly and computes x ≡ g
r mod p. P finally sends (X, x) to 

V . 

2. V  chooses { }0,1c∈ randomly and sends c to P . 

3. P  computes mody r cY q≡ + and sends y  to V . 

4. V accepts if and only if ( ) mod
c

y
g x X v p

α
≡ , 

where ( ), ,H ID X vα = . 

 
ii. Okamoto IBI [BNN04] 

 

- Setup. On input 1k , generate two large primes p  and q  of size 

k such that ( )1q p − , and an element 
p

g Z∈ of order q , where 

g is a generator of G , a subgroup of 
p

Z
∗ of order q . Choose a 

cryptography hash function { }: 0,1 qH G G Z
∗
× × → . Choose 

1 2 q
x x Z∈ randomly and compute 1 2 modx xX g g p− −

≡ . The system 

parameters params = ( )1 2, , , , ,p q g g X H and the master-key is 

1 2,x x which is known to the PKG only. 

- Extract. Given a public identity ID, choose 1 2,
q

r r Z∈  randomly 

and compute pggR
rr mod21

21≡ , qxIRHrs mod)||( 111 ⋅−−≡ , 

qxIRHrs mod)||( 222 ⋅−−≡ . The user private key is ( )1 2, ,R s s . 

- Identification Protocol.  

1. P  first computes pggS
ss mod21

21

−−
≡ . P next chooses 

1 2,
q

y y Z∈ randomly and computes pggY
yy mod21

21

−−
≡ . P  

finally sends ( ), ,R S Y to V . 



Java Implementation for Identity-Based Identification 

 

 
International Journal of Cryptology Research 

25 

2. V chooses 
q

c Z∈ randomly and sends c  to P . 

3. P  computes qcsyz mod111 +≡ ,  qcsyz mod222 +≡ and sends 

1 2,z z toV . 

4. V accepts if and only if pSggY
czz mod21

21≡ and 

)(
mod

H R ID
R SX p≡ . 

 
iii. Bellare-Namprempre-Neven IBI [BNN04] 

 

- Setup. On input 1k , generate two large primes p  and q  of size 

k  such that ( )1q p − , and an element 
p

g Z∈ of order q , where 

g is a generator of G , a subgroup of 
p

Z
∗  of order q . Choose a 

cryptography hash function { }: 0,1 qH G G Z
∗

× × → . Choose 

q
x Z∈ randomly and compute modxX g p≡ . The system 

parameters params ( ), , , ,p q g X H= and the master-key is x  

which is known to the PKG only. 

- Extract. Given a public identity ID, choose 
q

r Z∈ randomly and 

compute ( )mod , mody
R g p s r H R ID x q≡ ≡ + . The user 

private key is ( ),R s . 

- Identification Protocol.  

1. P  first computes modsS g p≡ . P  next chooses 
q

y Z∈  

randomly and computes modyY g p≡ . P  finally sends 

( ), ,R S Y to V . 

2. V  chooses 
q

c Z∈ randomly and sends c  to P . 

3. P  computes modz y cs q≡ + and sends y  toV . 

4. V  accepts if and only if z cg YS≡ mod p  and 

( )
mod

H R ID
S RX p≡ . 

 
iv. Cramer-Shoup IBI [Heng04] 

 

- Setup. Two random ,k -bit primes p  and q  are chosen, where 

2 1p p= +  and ,2 1q q= + , with both ,p and ,q prime. Let 

N pq= . Choose ,
N

h x QR∈ and ( )1k + -bit prime ,b  randomly. 

Choose a collision-resistant hash function H . The system 

parameters params ( ),, , , ,N h x b H= and the master-key is ( ),p q . 
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- Extract. Given a public identity { }0,1ID
∗

∈ , a random ( )1k +  -

bit prime ,b b≠ is chosen, and a random ,

N
y QR∈ is chosen. The 

equation 
( ),

mod
H xb

y xh N≡ mod N  is solved for y , where ,x  

satisfies the equation ( ) ( )
,

, , mod
b H ID

y x h N≡ . The user private 

key is ( ),, ,b y y . 

- Identification Protocol (secure in passive attack). 

1. P  chooses 
q

s Z∈ randomly and computes modbt s N≡ . P  

sends ( ),, ,b y t to V . 

2. V  chooses { }0,1,..., 1c b∈ − randomly and sends c to P . 

3. P  computes cz sy≡ mod N and sends z to V . 

4. V accepts if and only if 
( )( )

,

mod
c

H xbz t xh N≡ ,where 

( ) ( ) ( )
,

, , mod
b H ID

x y h N
−

≡ . 

- Identification Protocol (secure in active and concurrent attack). 
The following protocol is executed for pk log= times: 

1. P chooses 
q

s Z∈ randomly and computes modbt s N≡ . P  

sends ( ),, ,b y t to V . 

2. V  chooses { }0,1c∈ randomly and sends c  to P . 

3. P computes modcz sy N≡ and sends z toV . 

4. V accepts if and only if 
( )( )

,

mod
c

H xbz t xh N≡ , where 

( ) ( ) ( )
,

, , mod
b H ID

x y h N
−

≡ . 

 
v. Guillou-Quisquater IBI [Heng04] 

 

- Setup. Run RSA ( )1k to obtain ( ), ,N a b where b is a large prime. 

Choose a cryptographic hash function { }: 0,1
N

H Z
∗ ∗

→ . The 

system parameters params ( ), ,N b H= and the master-key is a  

which is know to the PKG only. 
- Extract. Given a public identity ID, compute the user private key 

( ) mod
a

d H ID N≡ . 

- Identification Protocol. 
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1. P  chooses 
N

r Z ∗
∈ randomly and sends modbx r N≡ to V . 

2. V chooses { }0,1,..., 1c b∈ − randomly and sends c to P . 

3. P  computes modCy rd N≡ and sends y  to V . 

4. V accepts if and only if that ( ) mod
Cby xH ID N≡ . 

 

IMPLEMENTATION RESULTS 

The following depicts the computational complexity of each scheme: 
 

TABLE 1:  Complexity comparison 

  
Schnorr  

[Heng04] 
BNN  

[BNN04] 
Okamoto 
 [BNN04] 

CS 
[Heng04] 

GQ  
[Heng04] 

Setup Cost 2
e m

T T+   
e

T  2
e m

T T+  2
m a QR

T T T+ +  m a i
T T T+ +   

Extract Cost 
6 4

e m

h a

T T

T T

+ +

+
 

e m

h a

T T

T T

+ +

+
 

2 2

2

m h

a

T T

T

+

+
 

4 2

2 2

e m

h i

T T

T T

+ +

+
 

e h
T T+   

Identification 
Cost 

6 4
e m

h i a

T T

T T T

+ +

+ +
 

5 3
e m

h a

T T

T T

+ +

+
 

8 7

2

e m

h a

T T

T T

+ +

+
 

8 3

2

e m

h i

T T

T T

+ +

+
 

4 2
e m h

T T T+ +  

e
T = exponentiation time 

h
T = hash time    

m
T = multiplication 

time 

m
T = addition time 

i
T = multiplicative inverse time 

QR
T = quadratic 

residue time 

TABLE 2: Operation Timing 

Operations Syntax 512-bit (ns) 1024-bit (ns) 
Exponentiation* modPow  

(BigInteger pow, BigInteger mod) 
8,155,056 15,942,848 

Multiplication multiply 
(BigInteger val) 

10,781 62,394 

Multiplicative 
Inverse* 

modInverse 
(BigInteger mod) 

525,584 1,194,377 

SHA-1 MessageDigest.getInstance 
(“SHA1”) 

33,784 39,010 

SHA-512 MessageDigest.getInstance 
(“SHA-512”) 

58,730 883,922 

Modular$ Mod 
(BigInteger mod) 

26,132 54,956 

Addition Add 
(BigInteger val) 

3,363 6,702 

Quadratic 
Residue 

jacobi(BigInteger val, BigInteger n) 6,053,811 6,280,951 

*modulo is random 512-bit number $value size is the double of modulo bit-
length 
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There are times where we wish to have all the operations finished 
executed before ending the final value with a single modular operation. 
However, this ideal case cannot be implemented because in JCA, syntax of 
exponentiation comes together with a modular operation as shown in Table 
2. This cannot be avoided and thus affect the efficiency. The following are 
parameters used in each scheme: 

 

TABLE 3 : Schemes Parameters 

Scheme Parameters 
Setup: DSA KeyPairGenerator 
Hash: SHA-1 

Schnorr, 
BNN, 

Okamoto ID: user@mmu.edu.my 
Setup: RSA KeyPairGenerator 
Hash: SHA-512 
Quadratic Residue: Jacobi symbol 

CS 

ID: user@mmu.edu.my 
Setup: RSA KeypairGenerator 
Hash: SHA-512 GQ 

ID: user@mmu.edu.my 

 
J2SE6 does not provide algorithm to find a quadratic residue modulo 

neither a prime nor a composite number. In order to find the quadratic 
residue modulo N (N is composite number) in CS scheme, we coded Jacobi 
symbol algorithm as in [Fis06]. For other details of parameters mentioned, 
kindly refer to [Java2]. We run the five schemes for 1000 times using the 
parameters above with a 512-bit key and 1024-bit key independently on 
Intel Pentium M 1.6 GHz, 512RAM, Windows XP Service Pack 2. We then 
average the running time. 

 

TABLE 4: Timing for 512-bit 

 Setup 
(ns) 

Extract  
(ns) 

Identification [P] 
(ns) 

Identification [A&C] 
(ns) 

Schnorr 4,891,679 1,272,181 12,826,772 1,692,239,880 
BNN 4,556,400 1,290,435 9,112,274 9,112,274 

Okamoto 7,399,199 2,367,228 15,156,250 15,156,250 
CS 552,521,647 119,084,865 96,400,380 8,452,845,999 
GQ 84,823,200 6,849,624 1,149,553 1,149,553 

 ns – nanosecond  A&C – active and concurrent attack  
 P  – passive attack 
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TABLE 5: Timing for 1024-bit 

 Setup 
(ns) 

Extract 
(ns) 

Identification 
[P] (ns) 

Identification 
[A&C] (ns) 

Schnorr 16,059,077 4,232,809 43,624,176 5,351,031,031 
BNN 16,563,530 4,443,884 33,784,060 33,784,060 

Okamoto 25,222,381 8,359,174 52,977,404 52,977,404 
CS 7,829,626,400 1,608,030,778 952,885,593 441,142,435,428 
GQ 516,212,870 44,216,585 3,503,753 3,503,753 

 ns – nanosecond  A&C – active and concurrent attack  
 P  – passive attack 

 
From the results, GQ is the most efficient scheme and CS is the slowest 

scheme. However, it is reasonable since CS scheme is proven secure in 
standard model [CS00] and thus its tradeoff is the performance. 

 

DISCUSSIONS 

Comparing the complexity and running time, we notice that even the 
complexity is about the same, timing result may vary a lot. The Extract and 
Identification Protocol of Schnorr scheme varies on only a single inverse 
operation but the timing has the difference of 11,554,591ns for 512-bit key. 
This is because inverse operation is costly since it uses extended Euclidean 
algorithm. However, the main concern is the bit-length of numbers instead 
of the amount of operations. For instance, the Extract in GQ scheme has 
only 2 operations but it takes more time than its Identification Protocol. The 

valueα , ( )H ID and N in Extract has bit-length about 512 on average while 

value b in Identification Protocol is fixed to be 65537 with bit-length of 17 

only. Consequently, bit-length of exponent value c in Identification Protocol 

would be much smaller (compare toα ) and thus the execution time of 

modular operation (with respect to N ) is reduced.  

 
In Schnorr scheme, since the size of q is set to 160-bit despite of the 

size of p , hash function SHA-1 is used in this scheme as its output is always 

160-bit. In real world application, SHA-512 is recommended (SHA-1 is 
theoretically broken [CR06]) but 512-bit hash value needs to go through a 
modular operation for q is only 160-bit. For the scheme to be secure against 

active and concurrent attack, the Identification Protocol is run for 2logk q=  

times sequentially and { }0,1c ∈ [Heng04]. In BNN scheme, the hash function 

issue is the same as in Schnorr scheme. Since it is proven to be secure 
against active and concurrent attacks as in scheme secured against passive 
attack [BNN04], no change is needed on Identification Protocol. Similar 
with BNN scheme, no change is needed on Identification Protocol for 
Okamoto scheme. 
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For CS scheme, as suggested in [CS00], optimization can be done by 

letting moda
x h N≡ for a random number α  mod ''qp , where α  is stored in 

the secret key. Thus 
( ),

mod
H xb

y xh N≡ will become 
( ),

mod
a H xb

y h N
+

≡ . 

Let d be the inverse of b mod ''qp , then 
( ),

mod
da dH x

y h N
+

≡ . This saves 

time by replacing 
m e

T T+ with 
m a

T T+ in Extract and replacing 
m

T with 
m

T  in 

Identification Protocol. For the scheme to secure against active and 
concurrent attack, the identification protocol is run for k times in sequence 

where 2logk p= or equivalently 2logk q= and { }0,1c∈ [Heng04]. Similar 

with BNN and Okamoto schemes, GQ scheme is proved to be secure against 
active and concurrent attacks as in the scheme secure against passive attack 
[Heng04] and thus no change is needed on its Identification Protocol. 

 

CONCLUSION 

We had provided a brief overview of IBI and obtain the running time 
for Schnorr, Bellare-Namprempre-Neven, Okamoto, Cramer-Shoup and 
Guillou-Quisquater IBI. We had also discussed on their implementation and 
performance.  
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