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EDITORIAL PREFACE
Since the time of Julius Caesar and possibly up until the Greek era, cryptography (a word
that is derived from the Greek term “cryptos”) has been an integral tool for organizations
(and indeed for individuals too) to ensure information that is intended only for authorized
recipients remain confidential only to this set of people. Cryptography had far reaching
implications for organizations in the event information leakage occurred. Often referred
to as the “last bastion of defence" – after all other mechanisms had been overcome by
an adversary, encrypted information would still remain useless to the attacker (i.e. that
is, under the usual security assumptions). Nevertheless, this simple fact has remained
oblivious to the practitioners of information security – omitting cryptographic mechanism
for data being transferred and also during storage.

Fast forward to World War 2, – the war between cryptographic and cryptanalytic tech-
niques. While the Germans were efficiently transferring information via the Enigma
encryption machine, the Allies in Bletchley Park, England were busy intercepting these
ciphered information being transmitted via telegraph by the Germans. Leading math-
ematicians, linguists, engineers etc. were all working to cryptanalyze these ciphers in
the most information way. It is here that the first electrical machine (i.e. the “bomba”)
was born – and revolutionized computing. Post World War 2 saw the emergence of the
“computer”. Every organization that had to process data had to acquire a computer so
as not to be left behind by their competitor. The banking sector advanced on a global
scale due to the invention of the computer. Techniques to secure information among
the headquarters of these banks had to be developed. Encryption procedures using the
same key (i.e. symmetric encryption) played this role in the early days. Then came
the unthinkable problem – computers were being deployed almost everywhere. How is
it possible to deploy cryptographic keys in secure manner so that symmetric encryption
could take place? Thus, leading to the so-called “key distribution” problem. It was not
until 1975, when Diffie and Hellman provided us with a secure key exchange method – and
in 1976 when Rivest, Shamir and Adleman with the “asymmetric encryption” scheme (i.e.
to encrypt using key e and decrypt using key d, where e ̸= d). Since then, cryptographic
procedures evolved, not only playing the role of ensuring confidentiality of data, but also
to ensure integrity and authenticity of data. It is also able to ensure that non-repudiating
of data does not occur.

Mechanisms to transfer and store data has changed of the centuries and more so every
5 years (in this modern age). Cryptography that has long existed before mechanisms
changed from manual – telegraphic – electrical – electronic (WAN/LAN/internet) – wired
until wireless procedures, has to be properly deployed in order to maintain a high level
of security confidence among the stakeholders of a certain organization. The concept
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of securing information via encryption procedures has to be properly understood in or-
der to avoid a null intersection to occur between cryptography and computer security
practitioners. This scenario would not be to the best interest for stakeholders. As a
“friendly” reminder, this scenario could already been seen in other discipline of knowl-
edge where the “minuting” (“minute-ting”) of knowledge has forced the original body of
knowledge to look as though it is independent and disassociated. Ever since mass usage of
computers became a reality, computer security issues have never been this complicated.
However, as the human race advances so will ingenious ideas emerge to overcome challenges.

It is hoped that CRYPTOLOGY2024 will not only provide a platform for every partic-
ipant to exchange ideas in their respective fields, but also to exchange new ideas on a
broader scale for the advancement of the field of cryptology and computer security. The or-
ganizing committee hopes every participant will have an enjoyable and beneficial conference.

Thank you.

Editorial Board,
CRYPTOLOGY2024



iii

ORGANISATION
General Chair Amir Hamzah Abd Ghafar

International Program Amr M. Youssef

Committee Arif Mandangan

Chin Ji Jian

Chris Liaw Man Cheon

Geong Sen Poh

Hailiza Kamarulhaili

Heng Swee Huay

Kamel Ariffin Mohd Atan

Mohd Anuar Mat Isa

Muhammad Asyraf Asbullah

Muhammad Reza Z’aba

Nur Azman Abu

Terry Lau

Thomas Studer

Yap Wun She

Executive Editors Muhammad Rezal Kamel Ariffin

Amir Hamzah Abd Ghafar

Muhammad Reza Z’aba

Wan Nur Aqlili Wan Mohd Ruzai

Zahari Mahad

Hazlin Abdul Rani

Technical Program Amir Hamzah Abd Ghafar

Committee Aniza Abd Ghani

Hazlin Abdul Rani

Muhammad Reza Z’aba

Muhammad Rezal Kamel Ariffin

Nik Azura Nik Abdullah



iv

Committee Members Faridatul Akhma Ishak

Hazlin Abdul Rani

Muhammad Asyraf Asbullah

Muhammad Reza Z’aba

Wan Nur Aqlili Wan Mohd Ruzai

Zahari Mahad

Illustration & Art Work Zahari Mahad



Table of Contents
Editorial Preface i

Committee iii

Table of Contents v

A Study on Multivariate Polynomial Solving in the Construction of Lattice-Based

Cryptographic Signature: A Case of Signature Forgery 1

Memory-Efficient Implementations of CRYSTALS-Kyber 12

Another Version of Chosen Plaintext Attack on McEliece Cryptosystem 25

A New Generic Strategy for Solving Multivariate Quadratic Polynomials 32

Current Status on Shor’s Algorithm via Quantum Computing 48

Exposing Vulnerabilities in a Post-Quantum Implicit Certificate Scheme 64

A Cryptanalysis on the Bivariate Cryptosystem in a Multivariate Setting 75

Related-Key Boomerang Attack on Mini-AES 97

Neural Network–based Cryptanalysis of PRESENT and D-PRESENT Block Ciphers 110

Durian: A General-Purpose Block Cipher 118

An Attack on The Diophantine Equation of The RSA Variant 140

Modification of Stickel’s Key Exchange Scheme Using Matrix Power Function Over

Tropical Semiring 149

An Improved Privacy-preserving Decision Tree Classifier based on Secret Sharing 163

Lightweight and Privacy-Preserving Public-Key Authenticated Encryption with Key-

word Search using Type-3 Pairing 177



Securing Nation’s Digital Future: A Proposed Transition to Post-Quantum Cryptog-

raphy 188

MySEAL: A National Trusted Cryptographic Algorithm List 195





Proceedings of the 9th International Cryptology and Information Security Conference 2024
CRYPTOLOGY2024, pp. 1–11.

A Study on Multivariate Polynomial Solving in
the Construction of Lattice-Based Cryptographic

Signature: A Case of Signature Forgery
Nor Siti Khadijah Arunah1,2 and Amir Hamzah Abd Ghafar1,3

1 Institute for Mathematical Research, Universiti Putra Malaysia 43400, Selangor, Malaysia
2 Department of Mathematics, College of Computing, Informatics and Mathematics, Universiti

Teknologi MARA Cawangan Johor, 85000 Segamat, Malaysia norsi830@uitm.edu.my
3 Department of Mathematics and Statistics, Faculty of Science, Universiti Putra Malaysia 43400,

Selangor, Malaysia amir_hamzah@upm.edu.my

Abstract. Lattice-based and multivariate-based cryptosystems have an advantage
in their relatively efficient encryption, decryption, and signing. The lattice-based
hard problem depends on solving high-degree univariate polynomial in terms of
b = A · s + e by finding the secret key s and error e. For multivariate, the hard
problem depends on the difficulty of solving m multivariate quadratic polynomial
equations with n variable. This paper will show a few past successful attacks on a
multivariate signature scheme. It succeeds in forging the signature using a rogue
certificate attack by solving the polynomial of the multivariate cryptosystem’s public
key. We modified these attacks to enable them to attack lattice-based signature
schemes. Moreover, we showed that solving the public key polynomial equation in
a lattice-based signature scheme may require additional work before we retrieve its
private keys.
Keywords: Lattice-based signature scheme · Learning with error · Post-quantum
cryptography · Multivariate signature Scheme · Multivariate Quadratic Problem

1 Introduction
Regarding the development of the quantum computer, the National Institutes of Standards
and Technology (NIST) has initiated a competition on post-quantum cryptography. In 2016,
NIST announced receiving 23 signature schemes and 59 encryption or key encapsulation
management (KEM) schemes into the competition [19]. Most submitted schemes focus on
five mathematical approaches: multivariate-based, hash-based, code-based, supersingular
elliptic curve isogeny-based, and lattice-based. In July 2022, NIST announced four
cryptographic schemes [20] that have passed the first call of the six-year competition.
In the list published, CRYSTALS-Kyber is a candidate under public-key encryption or
key encapsulation mechanism (PKC/KEM), while CRYSTALS-Dilithium, FALCON, and
SPHINCS+ are under digital signature schemes. Of the four algorithms, only SPHINCS+ is
not lattice-based. This shows the importance of understanding lattice-based post-quantum
cryptosystems.

Lattice-based cryptosystems use learning with error (LWE) as a hard problem. It
requires several generations of secret randomness from discrete Gaussian distribution to
build a system of linear equations with noise (more commonly known as "error"). The
difficulties in solving (or learning) this "error-embedded" system of linear equations define
lattice-based cryptography. The error or noise in the cryptographic system used in LWE
will fail a simple row reduction method to solve it. Regev [21] first introduced the concept
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of LWE in the lattice, used as a hard problem in cryptosystems by Güneysu et al. [13],
followed by Bai and Galbraith [3], and adopted in the post-quantum cryptosystems in
CRYSTALS-Dilithium [2] and FALCON [11] as signature schemes.

In particular, cryptosystems that use LWE as their hard problem will depend on
b = A · s + e equation, where A is a uniformly random k × l matrix over Zq. Here, A is
defined as a polynomial in the ring of Rq = Zq[X]/(Xn + 1) with A ∈ Rk×l

q . For vectors s
and e, it is defined as a small coefficient vector, with an element of Rq of size less than η.

For the multivariate-based cryptosystem, the security depends on the multivariate
quadratic problem (MQP) first used by Garey and Johnson [12]. This method was applied
to the Unbalanced Oil and Vinegar (UOV) scheme [16] and then to the Rainbow Signature
Scheme [8]. The schemes are depending on the equation of P = S ◦ F ◦ T and this
equation consists of an invertible quadratic map F : Fm → Fm with another two invertible
linear maps S : Fm → Fm and T : Fn → Fn. MQP has three categories, which are
underdetermined, determined, and overdetermined systems, depending on the size of m
and n used in the system. Only an underdetermined system is suitable for application in
building a signature scheme.

A digital signature adapts asymmetric cryptography to ensure the security and vali-
dation of any messages transmitted through an unsecured channel. It employed specific
mathematical processes to authenticate digital documents whilst providing message in-
tegrity. Digital signatures also follow the goals of cryptography, confidentiality, data
integrity, authentication, and non-repudiation. Forging a signature means manipulating
the mathematical structure used in the cryptosystem to produce a valid signature. Here,
multivariate-based and lattice-based signature schemes employ different mathematical
procedures but involve the same structure: polynomials and matrices. Thus, in this work,
we will compare both schemes to determine if the parameters provided by the rogue
certificate provider will enable the forging of the signature in the case of multivariate-based
and lattice-based signature schemes.

2 Related Works
Since the announcement of the post-quantum cryptosystem standardisation by NIST in
2016, many researchers have started working on attacking the post-quantum hard problems,
including the hardness of multivariate and lattice problems. Here, we discuss previous
results that aim to calculate solving polynomial parameters leading to forging the signature;
the cases will compare lattice-based and multivariate-based signature schemes.

Miura et al. [18] emphasise in their research that to solve MQP is trying to get one
solution of (x1, ..., xn) ∈ kn for equation fi(x1, ..., xn) = 0 for all i = 1, ..., m among all
solution. The first to come out with an algorithm to solve this problem was Kipnis-Patarin-
Goubin’s algorithm [16], extended by Courtois et al.’s algorithm [6] and Thomae et al.’s
algorithm [23]. Miura et al.’s proposed algorithm in [18] that solves the MQ-Problem for
fi(x1, ..., xn) = xFix + (linear) where Fi, ..., Fm are n × n matrices over k. In the research,
they separated the quadratic polynomial from the linear polynomial. They solved the
linear equations first where they let the linear equation xiLi,j(xm+1, · · · , xn) = 0 and
substitute the solution into the whole system and see if the solution match other conditions
to consider the solution is valid. In this case, they stated that n, m must be greater than
equal to 1 with n ≥ m(m + 3)/2.

Hashimoto in [14] solved the MQP for the underdetermined system of the case n ≥
m2 − 2m3/2 + 2m. His work stated that he needed to find an invertible matrix U that
consists of an element (uij)0≤i,j≤n, where if u00 ̸= 0 and the coefficient of the highest
degree, in this case, coefficient of x2

0 in fl(Ux) is zero then the solution of the MQP
problem is (u−1

00 u10, u−1
00 u20, · · · , u−1

00 un0) for f1(x) = 0, f2(x) = 0, · · · , fm(x) = 0. In 2021,
[4] improved the reconciliation attacks by [10] on the Rainbow Signature Scheme. A



Nor Siti Khadijah Arunah and Amir Hamzah Abd Ghafar 3

multivariate signature scheme is an underdetermined system with the number of equations
m less than the number of variable n or m < n. Beullens [4] attacked the Unbalanced
Oil and Vinegar (UoV) signature scheme by separating the cases of the underdetermined
system into two parts: if n − m ≤ m and n − m > m. He stated that the first case is
considered a direct attack as calculating P(o) = 0 gives a unique solution. In the second
case, calculating P(o) = 0 offers many solutions, with one of them corresponding to o ∈ O.

In 2022, [1] constructed the strategies to forge a multivariate signature scheme by
solving the multivariate polynomial in the system. In the paper, they show the Digital
Signature Forgery Mechanism (DSFM) where they can solve the polynomial system or
the signature is forgeable in 3 cases; DSFM1 show if p(j) = kjp(1) where kj ∈ Zq; DSFM2
show if p(j) = p(i) + p(k) and DSFM3 show if P(x + a) = w. For all these attacks,
solving polynomials is needed, where finding x while p(x) = 0. In 2023, [15] showed
in their works that the solution for P in a multivariate signature scheme is also the
solution for the summation of all the polynomials in P. In this paper, they also show
that by solving the quadratic polynomial, they are solving the whole system if every
polynomial in P a multiple of other polynomials such as fj(x) = kfj(x) with k is a scalar.
Here, if P = (f1(x), ..., fm(x)), solving it by finding vector x = (x1, ..., xn) such that
p(1)(x) = ... = p(m)(x) = 0.

For lattice-based signature schemes that adopt LWE as the hard problem, Regev [21]
stated that solving LWE means finding the error or noise in the equation of b = A · s + e
where b is a vector, A is an m × n matrix, s is a small coefficient secret vector and e is
a small coefficient vector denoted by the error or noise. CRYSTALS-DIlithium [2] and
FALCON [11] adopt the variant of LWE hardness into the signature scheme where the use
of high-degree univariate polynomials to strengthen the security, and we call the variant
Module Learning with Error (MLWE) and Ring Learning with Error (RLWE).

2.1 Paper Organisation
Section 3 begins with an introduction to MQP and LWE, including the mathematical
notations and the signing scheme process. Section 4 shows the method of solving the
polynomial in MQP. In Section 5, we try to solve the polynomial in LWE by following
the procedure of solving MQP and show if the solution solved the hard problem or led to
forging the signature. Section 6 will be the conclusion of our work.

3 Preliminaries
This section will provide basics on the multivariate-based and lattice-based signing scheme
hard problem and their key generation, signing and verification procedures based on UOV
[16] and CRYSTALS-Dilithium [2] respectively.

3.1 Multivariate Quadratic Problem
The hard problem in MQP lies in identifying the vector x = (x1, · · · , xn) in the system
of m quadratic equations with n variables under the finite field Fq in the system P. The
system P consist of m quadratic equation which inscribed as P =

(
p(1), · · · , p(m)). One

needs to recover vector x such that P(x) = 0 to solve MQP and recover any secret key
involved in the scheme.

From [7], the definition of quadratic polynomials in multivariate-based cryptography is
as follows:

Definition 1. [Multivariate Quadratic Polynomial] Let F = Fq be a finite field with q
elements. The number of equations is denoted by m with n number of variables. The
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system P =
(
p(1), · · · , p(m)) of multivariate quadratic polynomial is defines as

p(1)(x1, · · · , xn) =
n∑

i=1

n∑

j=1
p

(1)
ij . . . xixj +

n∑

i=1
p

(1)
i . . . xi + p

(1)
0

...

p(m)(x1, · · · , xn) =
n∑

i=1

n∑

j=1
p

(m)
ij . . . xixj +

n∑

i=1
p

(m)
i . . . xi + p

(m)
0 .

For a digital signature that uses MQP, we will use an underdetermined system, m < n,
where the number of the equations is smaller than the number of variables.

3.1.1 Polynomial Representation

The hard problem of multivariate-based signature schemes depends on the equation of
P = S ◦F ◦T and P is public while S,F and T are kept secret. To solve this hard problem,
one seeks to find and recover the three maps S,F and T from the published public key P .

In general, to generate public key P based on signature scheme UOV [16] and Rainbow
[9], first, we let Fq be a finite field with q elements. The number of equations is o, and the
number of variables is n, where n = o + v and v > o.

Affine map (S and T ) and central map (F) use in both scheme are in a quadratic
polynomials f (1), · · · , f (o) in the form below:

f (k) =
∑

a,b∈V

α
(k)
a,bxaxb +

∑

a∈V,b∈O

β
(k)
a,b xaxb +

∑

a∈V ∪O

γ(k)
a xa + δ(k)

where k = 1, · · · , o

From the equation, if V = 1, · · · , v and O = v + 1, · · · , n, then x1, · · · , xv are known as
Vinegar variables while xv+1, · · · , xn are the Oil variables. After computing P = S ◦ F ◦ T ,
it will resulted polynomial for public key P as in Definition1.

3.1.2 The Basic Signature Scheme of Rainbow

This section shows the key generation process, signing and verifying a multivariate-based
signature scheme, focusing on Rainbow [9].

Key Generation : Let Fq be a finite field with q elements and v1, · · · , vu+1 be integers
such that 0 < v1 < · · · < vu < vu+1 = n. Define the sets of integers Vi = 1, · · · , vi for
i = 1, · · · , u and set oi = vi+1 − vi and Oi = vi + 1, · · · , vi+1 for i = 1, · · · , u. Here,
|Vi| = vi and |Oi| = oi. Generate the central map F that consists of m = n − v1
polynomial. Next, generate two invertible affine maps S and T and composes P that
consist of S ◦ F ◦ T . Hence, P is a public key and S, F and T is a private key.

Signature Generation : To generate the signature for message d, use the hash
function to generate W where w = H(d) and compute x = S−1(w) ∈ Fm. After that,
we compute the pre-image y ∈ Fn of x under the central map F . Finally, compute the
signature z which is z = T −1(y).

Signature Verification : To check if z is a valid signature, first compute w = H(d)
and next compute w’ = P(z). If w’ = w accept the signature, otherwise reject.
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3.2 Module Learning with Error
The LWE problem asks to recover the secret s ∈ Zn

q given the random linear equation
system on s. To illustrate it, suppose we have a system of the following equations

7s1 + 3s2 + 4s3 = 4 (mod 7)
2s1 + 10s2 + 45s3 = 2 (mod 7)
14s1 + 8s2 + 12s3 = 4 (mod 7)

we can easily find the secret si for i ∈ 1, 2, 3 using Gaussian elimination polynomial time.
Adding an error ei for i ∈ 1, 2, 3 into the system will make the system hard to solve.

In the case of LWE, an error is formed in probability distributions χ ∈ Zq, and we let
As,χ on Zn

q × Zq be the probability distribution obtained by choosing vector a ∈ Zn
q . We

then choose an error e ∈ Zq depending on χ and form a system of (a, a · s + e), where the
addition is performed in Zq. The equation is then equal to (a, b), which represents the
public key of the LWE.

Meanwhile, MLWE was first studied by [5] and improved by [17]. In MLWE, Rq are
polynomial in residual ring of degree n and modulus q and written as Rq = Zq[X]/(Xn +1).
MLWE stated as matrix A ∈ Rk×l

q and a ring vector b as

b = A · s + e

where s ∈ Rl
q and e ∈ Rk

q are small secret polynomial vector with e is the error added in
the system.

The difference between LWE and its MLWE variant is that LWE uses large key sizes,
although it is provably secure. Its variant MLWE offers a much more complicated algebraic
structure, but it uses a small secret and error in which the coefficient used is bounded by
η. In CRYSTALS-Dilithium, the secret key and error coefficient are bounded by centred η
means the coefficient is in between −η to η.

3.2.1 Polynomial Representation

From [21], the definition of the polynomial in lattice-based cryptography is as follows:
Definition 2. [Lattice-based Polynomials] Let Rq be a polynomial residual ring of degree
n and modulus q with Rq = Zq[X]/(Xn + 1) and the matrix A ∈ Rk×l

q and a ring vector
b = A · s + e with the secret ring vector s ∈ Rl

q and small secret error e ∈ Rk
q . Given a

system B = (b(1)(x), ..., b(k)(x)) of k univariate polynomial with degree n, find x such that

b(1)(x) = ... = b(k)(x) = 0.

A system B = (b(1)(x), ..., b(k)(x)) of k univariate polynomial with degree n can also be
defined as equation below:

b(1)(x) =
n∑

i=0
a

(1)
i xi

...

b(k)(x) =
n∑

i=0
a

(k)
i xi.

Regev in [21] stated, solving LWE means we are being able to distinguish if vector
b is just a random vector or if it is a combination of A · s + e. Our goal here is to find
vector e or s from solving polynomial in b. There are two versions of solving the LWE:
search and decision. Search-LWE is to find s or e given polynomial matrix A and vector
b. In contrast, the Decision-LWE version distinguishes between an error inner product or
a random sample from Rn

q .
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3.2.2 The Basic Signature Scheme of CRYSTALS-Dilithium

This section shows the key generation process, signing and verifying a lattice-based signature
scheme, focusing on CRYSTALS-Dilithium [2].

Matrix A is generated in size k × l, in which each entry in the matrix is a polynomial
in the ring Rq = Zq[X]/(Xn + 1) where q = 223 − 213 + 1 is a prime and n is fixed at 256.
Secret vector s and e will then be generated randomly, with each of the coefficients being
an element of Rq with a small size less than η.

Key Generation: Generate a polynomial matrix A ∈ Rk×l
q , vector s ∈ Sl

η and vector
e ∈ Sk

η . Then compute b = A · s + e where A and b will be the public key while s and e
be the private key.

Signature Generation: To generate the signature, we first have to generate a masking
vector of polynomial y ∈ Sl

γ1−1. Signer then compute Ay and find w1, where w1 is high-
order bits of the coefficient in vector Ay. Challenge c is created from the hash of w1 and
message M . The signature is then computed as z = y + cs. Next, rejection sampling
ensures signature z will not leak any secret keys. Here, we set β to be the maximum
possible coefficient of cs, and check to ensure that z is less than γ1 − β. If z > γ1 − β,
then the second condition will run by finding the low order bits of coefficient Az − cb and
check if the low bits are less than γ2 − β. If both conditions fail, then z is rejected, and
the signing procedure will restart. This loop will continue until one of the two conditions
is satisfied to ensure the scheme’s security and correctness.

Signature Verification: Verifier first compute Az − cb and set w′
1 as the higher

order bits. Accept the signature if the coefficient of all polynomials in vector z are less
than γ1 − β and c is the hash of the message M concatenated with w′

1.
This verification actually works because Az − cb is actually equal to Ay − ce. These

algorithms will then show that Highbits(Ay) are equal to Highbits(Ay − ce). For the
detailed procedure, please refer to [2].

3.3 Comparison of Multivariate-based and Lattice-based Signature
Scheme

Here, we made a detailed comparison between both signature schemes, in the case of
Rainbow, which is multivariate-based, and CRYSTALS-Dilithium, which is a lattice-based
signature scheme.

Table 1: Comparison between Rainbow with CRYSTALS-Dilithium Signature Scheme

Comparison Multivariate-based (Rain-
bow)

Lattice-based
(CRYSTALS-Dilithium)

Hard Problem Multivariate Quadratic
Problem

Learning with Error

Trap-door functions prop-
erty

Hard to invert Hard to solve

Mathematical structure Polynomial matrix Polynomial matrix
Polynomial indetermi-
nate

Multivariate Univariate

Degree of polynomial 2 256

Table 1 shows that both signature schemes use the same mathematical structure, a
polynomial matrix, and a lot of attack and signature forgery is done for the Rainbow
signature scheme, which is already discussed in Section 2. Comparing between multivariate-
based and lattice-based signature schemes on their polynomials and matrices, we observe



Nor Siti Khadijah Arunah and Amir Hamzah Abd Ghafar 7

that a lattice-based signature scheme has a vector b = A · s + e,

bk,1 =




b1,1(x)
b2,1(x)

...
bk,1(x)


 =




∑n−1
i=0 b

(1)
i xi

∑n−1
i=0 b

(2)
i xi

...∑n−1
i=0 b

(k)
i xi




(1)

and for the multivariate signature scheme, we let P as a multivariate quadratic system
consisting of m polynomial equation with n variable over Fq. Thus, P can be written as,

f1(x) = f1(x1, · · · , xn)

f2(x) = f2(x1, · · · , xn)
...

fm(x) = fm(x1, · · · , xn)
that can be written in matrix form as,

P =




f1(x)
f2(x)

...
fm(x)


 =




f1(x1, · · · , xn)
f2(x1, · · · , xn)

...
fm(x1, · · · , xn)


 (2)

and we should have the set x = (x1, · · · , xm) as the solution of the multivariate system.
From equations (1) and (2), we can see some similarities in the polynomial equations

used in the key generation processes of lattice-based and multivariate-based signing schemes,
which we hope to manipulate in the proceeding sections.

4 Solving for Polynomial in MQP
From equation (2) we can see that P = (f1(x), · · · , fm(x)) is s system of m multivariate
quadratic. [1] stated in their research paper that, to forge the multivariate signature, we
need to either generate the valid signature s’ where P(s’) = z’ = z or we can find the
secret key S, F and T .

Jamal et al. [15] make two feasible attacks on a Multivariate-based signature scheme.
To summarise the attack, [15] proves that the signature can be forged if they can solve the
polynomial equation in the public key. In all three attacks, they show that f1(x) = · · · =
fm(x) = 0 and find x = (x1, · · · , xn) as the solution of all equations. In a multivariate-
based signature scheme, P is considered forgeable if the polynomial equation in P is
solved.

The two feasible attacks done in the research depend on the variation of polynomials
in P where the first attack is polynomials in P are written in fj(x) = kjf1(x) where
j = 2, · · · , m. From here, if f1(x) = z1 then for kj , it will became as follows,

f2(x) = z2 = k2z1

...
fm(x) = zm = kmz1

from here, we can conclude that the polynomial solution in [15] is also the solution of
other multivariate quadratic polynomials in the system P if the polynomials are multiple
of each other.
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It is the same as the second attack, [15] stated that P is also the solution for the
summation of every polynomial in a system P. In detail, they stated that if we have

fh(x) = f1(x) + · · · + fm(x)

and we found the solution for all x1, · · · , xn by solving for fh = 0 and the whole system is
solved.

5 Solving for Polynomial in MLWE
We start with a matrix A in the system of CRYSTALS Dilithium. There are three sizes of
matrix A according to [2], which are 4 × 4, 6 × 5 and 8 × 7 depending on the NIST security
level of 2,3 and 5, respectively.

Ak,l =




A1,1(x) A1,2(x) · · · A1,l(x)
A2,1(x) A2,2(x) · · · A2,l(x)

...
... . . . ...

Ak,1(x) Ak,2(x) · · · Ak,l(x)




Matrix A consist of k × l polynomial equation with degree at most n in every equation
following ring Rq = Zq[X]/(Xn + 1). We can see that each polynomial equation in A are
as follows:

A1,1(x) =
n−1∑

i=0
a

(1,1)
i xi

A1,2(x) =
n−1∑

i=0
a

(1,2)
i xi

...

Ak,l(x) =
n−1∑

i=0
a

(k,l)
i xi

Since LWE equations are built based on b = A · s + e, observe the secret vector s and
e. Vector s and e consist of l × 1 and k × 1 polynomial equations with degree at most n,
respectively.

sl,1 =




s1,1(x)
s2,1(x)

...
sl,1(x)


 =




∑n−1
j=0 s

(1)
j xj

∑n−1
j=0 s

(2)
j xj

...∑n−1
j=0 s

(l)
j xj




ek,1 =




e1,1(x)
e2,1(x)

...
ek,1(x)


 =




∑n−1
g=0 e

(1)
g xg

∑n−1
g=0 e

(2)
g xg

...∑n−1
g=0 e

(k)
g xi




After we compute b which is equal to A · s + e, b need to be reduced following the
ring Rq = Zq[X]/(Xn + 1). We will get every polynomial in b as follows:
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bk,1 =




b1,1(x)
b2,1(x)

...
bk,1(x)


 =




∑n−1
i=0 b

(1)
i xi

∑n−1
i=0 b

(2)
i xi

...∑n−1
i=0 b

(k)
i xi




or
b1,1(x) = [A1,1(x) · s1,1(x) + A1,2(x) · s2,1(x) + · · · + A1,l(x) · sl,1(x)] + e1,1(x)

...
bk,1(x) = [Ak,1(x) · s1,1(x) + Ak,2(x) · s2,1(x) + · · · + Ak,l(x) · sl,1(x)] + ek,1(x)

b1,1(x) =




n−1∑

i=0

n−1∑

j=0
a

(1,1)
i s

(1)
j xi+j +

n−1∑

i=0

n−1∑

j=0
a

(1,2)
i s

(2)
j xi+j + · · · +

n−1∑

i=0

n−1∑

j=0
a

(1,l)
i s

(l)
j xi+j


+

n−1∑

g=0
e(1)

g xg

...

bk,1(x) =




n−1∑

i=0

n−1∑

j=0
a

(k,1)
i s

(1)
j xi+j +

n−1∑

i=0

n−1∑

j=0
a

(k,2)
i s

(2)
j xi+j + · · · +

n−1∑

i=0

n−1∑

j=0
a

(k,l)
i s

(l)
j xi+j


+

n−1∑

g=0
e(k)

g xg

The multiplication of two polynomials from the matrix A with vector s which is As will
raise the degree of the solution exceeding the maximum degree. For CRYSTALS-Dilithium,
the highest degree in the solution should not be greater than n; thus, each degree of the
polynomial in vector b will be reduced after we use the Number Theoretic Transform or
NTT [22] to multiplying matrix A with vector s. Besides, every coefficient in the equation
is also reduced following the ring Rq set earlier following the algorithm in [3].

We then solved the polynomial in b. We first let b(1,1)(x) = b(2,1)(x) = · · · = b(k,1)(x) =
0 and then solve for x. Each equation in b will give different x values, and each equation
will have at most n − 1 values. This happens because lattice-based cryptography uses
univariate, with n − 1 degree of polynomial at most. But, if we let the structure of LWE
be multiple of the first equation, which means bm,1(x) = fmb1,1(x) where m = 2, · · · , k,
then the solution of the first equation in b are the solution of all equation in b. If we can
write all of the polynomial equations in b as

b2,1(x) = f2b1,1(x)
...

bk,1(x) = fkb1,1(x)
where fm ∈ Zq we will get the solution for x such that b1,1(x) = 0. To illustrate, when we
let b = 0, and if the polynomial can be factored, then it will give a solution for x,

b1,1(x) =
n−1∑

i=0
b

(1)
i xi = (x − b1)(x − b2) · · · (x − bn−1)

x will equal to b1, b2, ..., bn−1 or simply said that x will have at most n − 1 solution to be
analyse. Then

b2,1(x) = f2b1,1(x) = f2(0) = 0
...

bk,1(x) = fkb1,1(x) = fk(0) = 0.

We conclude here if we can solve for x for the first polynomial in b where we let
b(x) = 0 then and we have also solve for x in the whole system of LWE. However, the
solution for x itself is insufficient to solve the whole equation and extract the secret key.
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6 Conclusion
In conclusion, following the CRYSTALS-Dilithium signature scheme procedure, we com-
pared the approach of solving multivariate signature schemes that use MQP as their hard
problem that mainly focused on the case of Rainbow and UOV with solving the polynomial
of the lattice-based signature scheme. Here, we identified that solving a lattice-based
signature scheme’s high-degree polynomial system will not be enough to retrieve the
private keys. In this paper, we use two approaches: finding the unknown and solving the
polynomial by manipulating the equation. Both approaches show promise and require
further development to effectively solve the system or address signing forgery. However,
factoring the polynomial in the system is possible despite having a lot of potential solutions,
knowing that CRYSTALS-Dilithium polynomials are in a high degree. In the multivariate
signature schemes, some parameters were provided that allowed for the forgery of the
digital signature. For the cases discussed above, we recommend focusing on the NTT
process of addition and multiplication, which makes it easier to manipulate the system
that might lead to signature forgery.
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Abstract.
This paper presents a software memory-efficient implementation of CRYSTALS-Kyber
that can be deployed on standard micro-controllers and embedded devices. The
implementation is cross-platform and can be integrated into products already existing
in the field. The goal is to reduce the memory footprint of the CRYSTALS-Kyber
execution while maintaining performance similar to the reference implementation1.
The work results in two different implementations: one with a low memory footprint
and stable speed performance and one with a memory-time trade-off option. In
comparison with the 20KB memory requirement of the reference implementation, one
of our implementations utilises less than 3KB of memory for each of these algorithms.
Both implementations merge all Kyber variants (Kyber-512, Kyber-768, Kyber-1024)
into a single code and adhere to NIST implementation recommendations, as outlined
in the FIPS-203 directive. The perspective offers several possibilities to improve the
implementation’s speed.

Keywords: Post-quantum cryptography · CRYSTALS-Kyber · memory-efficient im-
plementation · software implementation · cross-platform embedded implementation
· ARM · Risc-V

1 Introduction
With the advancements in quantum computer research [7], classical asymmetric cryptogra-
phy (RSA, ECC, etc.) appears to be under threat. It is believed that a quantum computer
can break classical asymmetric cryptography by utilizing Shor’s algorithm [12]. In 2016,
the National Institute of Standards and Technology (NIST) announced a standardization
process for post-quantum cryptography. The goal of this process was to select a crypto-
graphic algorithm that will be resistant to quantum computers in the future. After six
years, three elimination rounds, and 69 different proposals, NIST selected four algorithms
CRYSTALS-Kyber, CRYSTALS-Dilithium, FALCON and Sphincs+ with the intention of
standardizing them. These algorithms were selected after significant investment and effort
from the scientific community. The only key encapsulation mechanism (KEM) in this
list is CRYSTALS-Kyber. CRYSTALS-Kyber submission [3] was selected for its fast key
generation, encapsulation, and decapsulation [13]. It also uses a small public key, a small
secret key, and a small cipher text. So, Kyber has excellent performance in many settings.
Kyber’s security is based on the Module Learning With Errors (MLWE) problem [8], which
is believed to be secure against quantum adversaries.

1https://github.com/pq-crystals/Kyber/tree/main
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Contribution
This work presents two software optimizations to reduce the random-access memory (RAM)
footprint in Kyber implementation with FIPS (Federal Information Processing Standard)
parameters. We consider two approaches:

1. one with stable speed performance;

2. another with a memory-time trade-off for very constrained devices, such as smart
card.

We restrict ourselves to algorithmic and C-language approach for implementing Crystals-
Kyber in existing field-deployed products. The key benefit lies in its compatibility with
a wide range of platforms, making it suitable for adoption across diverse systems. Our
implementation avoids reliance on architecture-specific methods, ensuring robustness and
portability. Our investigation involved various embedded platforms, including ARM
and RISC-V architectures. We successfully unified multiple security variants into a
single cohesive codebase while maintaining cross-platform compatibility. This consolidation
streamlines maintenance, enhances security, and simplifies deployment across heterogeneous
environments. We also discuss the difference between FIPS Module Lattice-based (ML)-
KEM and CRYSTALS-Kyber’s version and update our code with the NIST standardization
guideline. At the end, we suggest several perspectives for future research.

Organization of the paper
Section 2 describes the CRYSTALS-Kyber key encapsulation mechanism and the difference
with the NIST standardization. Section 3 presents the algorithm optimizations and
the implementation optimizations. Section 4 presents the performance results of our
software implementations. In Section 5, we conclude with various ways to improve Kyber’s
implementation and reference studies in this area.

2 Kyber
Several versions of the Kyber key encapsulation algorithm exist. This section provides an
overview of the Kyber submission and algorithms [3].

2.1 Notation
Let q be a prime integer and n be a power of two. In the following, we use regular
lower-case letters p for polynomials in the ring Rq = Zq/(Xn +1), where Zq is a Z/qZ field.
Polynomials in Number-Theoretic Transform (NTT) representation are denoted p̂. We
also use bold lower-case letters v for vectors and bold upper-case letters M for matrices.
So, vectors and matrices are both over Rq and Tq (the NTT domain of Rq elements). We
denote by ◦ the coefficient-wise multiplication of two polynomials (respectively matrix
coefficient-wise multiplication vector) in the NTT domain (the algorithms are built to
avoid multiplication on Rq, all multiplications are intended to happen in the NTT domain).
Let â ∈ T k

q , b̂ ∈ T k
q so â ◦ b̂ = ĉ1 ∈ T k

q and let Â ∈ T k×k
q , b̂ ∈ T k

q so Â ◦ b̂ = ĉ2 ∈ T k
q .

Lower-case Greek ρ, σ and µ refer to random bit-strings that are used as seed.

2.2 Specification
Kyber is a post-quantum KEM, used for securely exchanging a shared secret between
two parties over a public channel. Kyber originated from the LPR encryption scheme
(Lyubashevsky, Peikert, and Regev), which was introduced in 2010 [3, 10]. The module
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Table 1: Kyber parameter sets

n k q η1 η2 (du,dv) δ

KYBER512 256 2 3329 3 2 (10,4) 2−139

KYBER768 256 3 3329 2 2 (10,4) 2−164

KYBER1024 256 4 3329 2 2 (11,5) 2−174

learning with error problem hardness [3, 8] serves as the foundation for this. Kyber is a
specific instance of the learning with error problem. Solving a noisy system of equations
is a hard problem. Let a matrix A ∈ Rk×k

q and two vectors s, e ∈ Rk
q (with some

properties), the noisy system of equations A× s + e = z seems hard to solve, given (A, z)
and finding (s, e). More in details, vectors s and e are sample from a centered binomial
distribution over the support {−ηi, . . . , ηi}, i ∈ {1, 2} . Kyber uses q = 3329 as a prime
with q = 28 × 13 + 1 and n = 256 as power of two. Kyber is available in several security
levels Kyber-512, Kyber-768 and Kyber-1024, which correspond to AES-128, AES-192
and AES-256, respectively. However, the q and n parameters remain constant across all
variants. This is one of the other strengths of the Kyber cryptosystem. Kyber’s security
scaling parameter is k ∈ {2, 3, 4}. And Kyber uses other various parameters: η1, η2, du,
dv, all determined by the security level (k) (see Table 1).

The Kyber-KEM decapsulation process may fail even when all correct input is provided.
This failure, known as decapsulation failure, occurs when the shared secret recovered
after the decapsulation process is not the same as the shared secret produced during
encapsulation. The probability of failure is low but still exists and can be estimated (δ in
Table 1).

Basically, the chosen-ciphertext attack (CCA)-secure Kyber-KEM is constructed in
two stages. Firstly, establish an indistinguishability under chosen-plaintext attack (IND-
CPA) public key encryption scheme, the Kyber.CPAPKE. Secondly, use a variant of the
Fujisaki-Okamoto transform [5] to achieve a CCA-secure KEM [3].

2.2.1 Kyber.CPAPKE

Kyber.CPAPKE [3] is a post-quantum public-key encryption scheme using a Module-
LWE instance. These algorithms are reused in the different Kyber-KEM algorithms.
Kyber.CPAPKE uses three routines: key-generation (Algorithm 1), encryption (Algo-
rithm 2), and decryption (Algorithm 3).

It is relevant to note that the matrix is sampled directly in the NTT domain from a
public seed ρ. In contrast, vectors s, e, r, e1 and the polynomial e2 are sampled in the
coefficient domain in order to ensure good properties (small coefficients). The sample is
obtained using the XOF and PRF functions, respectively SHAKE128 and SHAKE256.
The Parse function collaborates with XOF to generate uniformly pseudo-random elements
of Tq. The CBDηi

function collaborates with PRF to generate samples from the distribution
Dη(Rq).

The Encode algorithm serializes an array of d-bit integers into a d × 32-bytes. The
Decode algorithm reverse this process by converting a d×32-bytes into an array of integers
of size d-bit. Both arrays have a fixed length of 256.
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Algorithm 1 KYBER.CPAPKE.KeyGen(): Key generation
Output: Secret key sk ∈ B12·k·n/8

Output: Public key pk ∈ B12·k·n/8+32

1: d← B32

2: (ρ, σ) := G(d)
3: N := 0
4: for i from 0 to k − 1 do
5: for j from 0 to k − 1 do
6: Â[i][j] := Parse(XOF(ρ, j, i))
7: end for
8: end for
9: for i from 0 to k − 1 do

10: s[i] := CBDη1(PRF(σ, N))
11: N := N + 1
12: end for
13: for i from 0 to k − 1 do
14: e[i] := CBDη1(PRF(σ, N))
15: N := N + 1
16: end for
17: ŝ := NTT(s)
18: ê := NTT(e)
19: t̂ := Â ◦ ŝ + ê
20: pk := (Encode12(̂t mod q)||ρ)
21: sk := Encode12(̂s mod q)
22: return (pk, sk)

Algorithm 2 KYBER.CPAPKE.Enc(pk, m, r): encryption
Input: Public key pk ∈ B12·k·n/8+32

Input: message m ∈ B32

Input: random coins r ∈ B32

Output: Ciphertext c ∈ Bdu·k·n/8+dv·n/8

1: N := 0
2: t̂ := Decode12(pk)
3: ρ := pk + 12 · k · n/8
4: for i from 0 to k − 1 do
5: for j from 0 to k − 1 do
6: ÂT [i][j] := Parse(XOF(ρ, i, j))
7: end for
8: end for
9: for i from 0 to k − 1 do

10: r[i] := CBDη1(PRF(r, N))
11: N := N + 1
12: end for
13: for i from 0 to k − 1 do
14: e1[i] := CBDη2(PRF(r, N))
15: N := N + 1
16: end for
17: e2 := CBDη2(PRF(r, N))
18: r̂ := NTT(r)
19: u := NTT−1(ÂT ◦ r̂) + e1
20: v := NTT−1(̂tT ◦ r̂) + e2 + Decompressq(Decode1(m), 1)
21: c1 := Encodedu(Compressq(u, du))
22: c2 := Encodedv(Compressq(v, dv))
23: return c := (c1||c2)
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Algorithm 3 KYBER.CPAPKE.Dec(sk, c): decryption
Input: Secret key sk ∈ B12·k·n/8

Input: Ciphertext c ∈ Bdu·k·n/8+dv·n/8

Output: Message m ∈ B32

1: u := Decompressq(Decodedu(c), du)
2: v := Decompressq(Decodedv(c + du · k · n/8), dv)
3: ŝ := Decode12(sk)
4: m := Encode1(Compressq(v −NTT−1(̂sT ◦NTT(u)), 1))
5: return m

The Compress function takes an element of Zq and reduces it into an element of Z2d

with the function x 7→ ⌈(2d/q)× x⌋ for d < 12. The Decompress function takes an element
of Z2d and transforms it into an element of Zq with the function y 7→ ⌈(q/2d) × y⌋ for
d < 12. Two interesting properties are directly obtained:

1. The input is preserved when the Decompress function is follow by the Compress
function (Compressd ◦ Decompressd = Id). Please note that the inverse composition
does not preserve the input, because Compress erases the least significant bits.

2. The input is not significantly distorted by the composition Decompressd ◦ Compressd

when d is close to 12.

To improve the efficiency of the Kyber algorithm, the multiplication on Rq is not per-
formed, instead the Number-Theoretic Transform (NTT) is performed and multiplications
are done in the NTT-domain, Tq. It is important to note that Rq is naturally isomorphic
to Tq through the NTT-transform. So, for f, g ∈ Rq, we denote f̂ = NTT(f) and we get
f ×Rq g = NTT−1(f̂ ×Tq ĝ), where ×Rq and ×Tq are multiplications in Rq and Tq.

2.2.2 FIPS 203: ML-KEM

This section concludes with a comparison of Kyber-KEM and the FIPS-203 standard-
ization (draft). Kyber employs a variant of the Fujisaki-Okamoto (FO) transform, to
transition from an IND-CPA encryption scheme to a CCA-secure KEM. The FO-transform
version was modified during both round 1 and round 2 of the NIST standardization process,
as well as during CRYSTALS-Kyber’s standardization period.

Algorithm 4 KYBER.Encaps
Input : Public key pk
Output : Ciphertext c
Output : Shared secret K
1: m← B32

2: m← H(m)
3: (K̄, r) := G(m ∥ H(pk))
4: c := KYBER.CPAPKE.Enc(pk, m, r)
5: K := KDF(K̄ ∥ H(c))
6: return (c, K)

Algorithm 5 ML-KEM.Encaps
Input : Public key pk
Output : Ciphertext c
Output : Shared secret K
1: m← B32

2: m← H(m)
3: (K, r) := G(m ∥ H(pk))
4: c := KYBER.CPAPKE.Enc(pk, m, r)
5: K := KDF(K̄ ∥ H(c))
6: return (K, c)



Nascimo Madieta, Guillaume Aymard, Nadia El Mrabet and Daniele Fronte 17

Algorithm 6 KYBER.Decaps
Input : Secret key sk
Input : Ciphertext c
Output : Shared secret K
1: pk ← sk
2: h← sk
3: z ← sk
4: m′ := KYBER.CPAPKE.Dec(sk, c)
5: (K̄′, r′) := G(m′ ∥ h)
6: c′ := KYBER.CPAPKE.Enc(pk, m′, r′)
7: if c = c′ then
8: K := KDF(K̄′ ∥ H(c))
9: else

10: K := KDF(z ∥ H(c))
11: end if
12: return K

Algorithm 7 ML-KEM.Decaps
Input : Secret key sk
Input : Ciphertext c
Output : Shared secret K
1: pk ← sk
2: h← sk
3: z ← sk
4: m′ := KYBER.CPAPKE.Dec(sk, c)
5: (K′, r′) := G(m′ ∥ h)
6: K̄ ← J(z ∥ c, 32)
7: c′ := KYBER.CPAPKE.Enc(pk, m′, r′)
8: if c = c′ then
9: K′ := K̄

10: end if
11: return K′

Furthermore, NIST introduces four additional modifications between CRYSTALS-Kyber
and the standardized version :

• In FIPS-203, CRYSTALS-Kyber (renamed ML-KEM) does not utilize a key derivation
function (KDF) on a message hash during the encapsulation process. The ML-KEM
and CRYSTALS-Kyber used different building methods for their shared secret. A
KDF function was not used to rebuild the shared secret during the decapsulation
step. NIST chose to use the shared secret as the first part of SHA3-512(m′ ∥ h)
if the decapsulation was successful. And if the decapsulation fails, a deterministic
derivation of a random value is returned (the hash of a random nonce z and the
ciphertext c, SHAKE256(z ∥ c, 32)).

• NIST has chosen to set the size of a shared secret at 256 bits.

• In the FIPS-203 version, pre-hashing the message m is no longer necessary, if the
message m adheres to the NIST-approved randomness property.

• The final requirement is an input validation step for the ML-KEM.Encaps algorithm.
The input for ML-KEM.Encaps(pk) must be a valid encapsulation key.

3 Optimizations
The previous section presented Kyber algorithm. Kyber implementation will be shown in
this section. Our considerations are based on the following recommendations [14].

• The crypto implementation must be in constant-time as it is the case with the Kyber
reference implementation2.

• The intermediate values must be destroyed after being used .

• The Kyber reference implementation and the Kyber algorithm can be modified, but
they must produce the correct output for every input.

3.1 Algorithm
For each Kyber algorithms (KeyGen, Enc, Dec), the variable dependency is identified. For
example in the KeyGen process, where the vector t is completely determined by three

2https://github.com/pq-crystals/Kyber/tree/main
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elements, the matrix A, the vector s and the vector e. Similarly, the matrix A is totally
determined by the value of ρ. In this way, we get a natural hierarchy for each element of
Kyber algorithm. If several elements don’t have any common dependency, they can be
processed sequentially. This identification has two purposes.

• Firstly, the elements for intermediate computations can be destroyed just after being
used if they are not needed for further use.

• Secondly, it is also useful for sequencing the different stages of Kyber algorithms.

As an example, in the encryption process of Kyber, it is recommended to finish all
computations for c1 before starting computations for c2. This process generates fewer
variables at the same time. Algorithm 8 illustrates our application of this method to a
Kyber key generation process. Our Kyber key generation algorithm (Algorithm 8) enables
the manipulation of vector e after clearing the memory used for matrix A and vector s.
This method can be applied to each algorithm of Kyber.

Algorithm 8 Kyber.CPAPKE.KeyGen(): key generation
Input : Secret key sk
Output : Public key pk

1: seed← B32

2: (ρ, σ) := G(seed)
3: CLEAN d
4: Â := SampleT k×k

q
(ρ)

5: s := SampleRk
q
(σ)N

6: t̂′ := Â ◦ NTT(s)
7: sk ◀ pack(̂s)
8: CLEAN ŝ, CLEAN Â
9: e := SampleRk

q
(σ)N

10: CLEAN σ
11: t̂ := t̂′ + NTT(e)
12: pk ◀ pack(̂t)∥ ρ

3.2 Memory reduction
There are several methods for reducing memory usage. The algorithmic rework method
previously exposed in Section 3.1 contributes to the process. In the case of CRYSTALS-
Kyber, a streaming method is used to further reduce the memory footprint. This method
was introduced in [4], with an implementation of CRYSTALS-Kyber on Cortex-M4 platform
and optimization of the NTT with the Kyber’s Round 2 specifications.

The streaming method aims to process large elements (matrices and vectors) one
polynomial at a time. To generate the complete matrix Â, k2 times the Kyber’s polynomial
memory size is required, and to generate a complete vector, k times the Kyber’s polynomial
memory size is also necessary. In CRYSTALS-Kyber, each polynomial has coefficients
encoded on at most 16 bits, and all coefficients are modulo q (332910 = 1101000000012).
Each polynomial has at most 256 coefficients. So, each Kyber polynomial costs 512 bytes of
memory. We can estimate the instant memory cost gain to be (k− 1) · 512 + (k · k− 1) · 512
bytes for a matrix-vector multiplication. The estimated instant memory cost gain is instead
2 · (k − 1) · 512 for the vector-vector multiplication. The equation t̂′ = Â ◦ ŝ can be solved
with this method as shown in the Algorithm 9. This method can also be applied to the
equation v̂′ = t̂⊤ ◦ ŝ.
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Algorithm 9 streaming Â ◦ ŝ
Input : ρ, σ
Output : t̂′ = (t̂0, t̂1, ..., t̂k−1)

1: for i from 0 to k − 1 do
2: ti := 0
3: for j from 0 to k − 1 do
4: sj ← SampleRq (σ)N

5: âij ← SampleTq (ρ)
6: ŝj := NTT(sj)
7: t̂i := t̂i + âij ×Tq

ŝj

8: end for
9: process(t̂i) process(x) can be any operation using x

10: end for

When performing matrix-vector multiplication using the streaming method, there is a
significant decrease in speed performance. The vector s is sampled k times and transformed
k times in the NTT-form. For CRYSTALS-Kyber, this trade-off between memory and
performance is unattractive. Kyber’s polynomial weight is 512 bytes, meaning that one
polynomial can be preserved in a constrained device memory. To maintain performance, it
is recommended to generate the complete Kyber vector prior to matrix-vector multiplication
(s in KeyGen, r in Enc). However, this slowdown does not happen in the vector-vector
multiplication case.

On the fly ("on fly version"). To improve reduction, another method can be applied
to Kyber’s elements. These elements can be simultaneously sampled and operated upon.
Each time enough coefficients have been sampled, they are used directly. This method can
be applied to the multiplication operations such as matrix-vector or vector-vector, as well
as the addition operations, such as vector-vector or polynomial-polynomial. The addition
of noise involving an element with specific properties from Rq is a specific case. Therefore,
elements cannot be directly sampled into Tq and used. Instead, coefficients are sampled
in Rq and the other operands are re-transformed into a Rq domain. This process may
introduce a slight slowdown depending on the performance of the NTT process. Methods
to reduce this slowdown will be discussed in Section 5.

Vector conservation ("store version"). This second version of Kyber’s implementation
prioritizes reducing memory size, without regenerating the same elements multiple times.
Our goal is to provide an implementation with a very small memory footprint that can
represent a potential trade-off between memory and performance for extremely constrained
devices. As mentioned previously, matrix-vector operations use the operand vectors k
times. Re-sampling the same vector represents a significant performance penalty. To avoid
generating the same vectors multiple times, we decided to keep them encoded in this
implementation version (Fig 1). In Kyber.KeyGen, the vector s is naturally stored in sk.
During the matrix-vector operation, the coefficients of sj are extracted and multiplied with
âij elements. In Kyber.Enc, the vector r is stored compressed in memory. During ÂT ◦ r̂,
the coefficients of rj are uncompressed, transform into Tq, and operated on the fly with
ÂT elements. Again, this method introduces a slowdown. This slowdown is related to the
performance of the NTT process. This performance slowdown is presented in Section 4.
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Figure 1: Store mechanism: The vector is compressed and stored in memory. During the
calculation step, the relevant polynomial is decompressed and utilized.

3.3 One code, three Kybers
In our work, we merged all variants of CRYSTALS-Kyber for all parameter sets. By
merging all variants of CRYSTALS-Kyber, the following advantages can be obtained.

• A better development pipeline and a better testing process.

• A smaller code size.

• Users can select the variant at execution time, as in typical cryptographic libraries.

All three versions of Kyber are compiled into a single code using the method of code
factorization. Code factorization improves readability. It also allows you to work on all
three variants simultaneously. In addition, testing of these three variants can be done in a
single compilation. While code size may not be a significant issue for larger devices, it is
crucial for embedded systems. In an embedded environment, small code size is a great
advantage, as it allows for more functionality to be carried on the same micro-controller.
In our code, we pre-build some data structures to modify the behavior of our program. At
the time of executing the Kyber variant, we loaded one of these structures into memory to
provide context. This merge comes with a cost of instant memory footprint at a particular
step of Kyber’s algorithm. However, this instant memory footprint cost is not at the peak
memory consumption moment: this cost is thus transparent for the maximum memory
footprint.

4 Results
We implemented CRYSTALS-Kyber using the methods described in Section 3. Our work
aims to reduce the memory footprint without significantly slowing down the implemen-
tation’s performance when compared to the reference implementation. To achieve this,
we avoided over-commitment and maintained stable performance by generating specific
vectors. Additionally, we implemented a "store" version of the Kyber crypto-system. The
"store" implementation presents a significant reduction in memory usage compared to other
implementations. However, Kyber.Encaps("store") and Kyber.Decaps("store") experience
a significant slowdown of more than 22% compared to the reference implementation. On
the other hand, Kyber.Keygen("store")’ s memory usage has been drastically reduced with
a slowdown of less than 10% (4.4% for Kyber-512 and 7.4% for Kyber-768). We have
updated both of our implementations in order to meet the requirements of ML-KEM.
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Table 2: Stack usage for all three security levels of Kyber and ML-KEM update.

scheme implementation Keygen Encaps Decaps
Kyber512 reference* 6 116 B 8 780 B 9 556 B
Kyber512 [4] Botros et al.* 3 136 B 2 720 B 2 744 B
Kyber512 this work("on fly")* 2 576 B (-17%) 2 680 B (-1%) 2 680 B (-2%)
Kyber512 this work("store")* 2 088 B (-33%) 2 440 B (-10%) 2 440 B (-11%)

ML-KEM512 this work("on fly")* 2 576 B (-17%) 2 680 B (-1%) 2 680 B (-2%)
ML-KEM512 this work("store")* 2 088 B (-33%) 2 440 B (-10%) 2 440 B (-11%)

Kyber768 reference* 10 212 B 13 380 B 14 476 B
Kyber768 [4] Botros et al.* 3 648 B 3 232 B 3 248 B
Kyber768 this work("on fly")* 3 088 B (-15%) 3 192 B (-1%) 3 192 B (-2%)
Kyber768 this work("store")* 2 088 B (-43%) 2 568 B (-20%) 2 568 B (-21%)

ML-KEM768 this work("on fly")* 3 088 B (-15%) 3 192 B (-1%) 3 192 B (-2%)
ML-KEM768 this work("store")* 2 088 B (-43%) 2 568 B (-20%) 2 568 B (-21%)
Kyber1024 reference* 15 100 B 18 772 B 20 348 B
Kyber1024 [4] Botros et al.* 4 160 B 3 752 B 3 776 B
Kyber1024 this work("on fly")* 3 600 B (-13%) 3 704 B (-1%) 3 704 B (-2%)
Kyber1024 this work("store")* 2 088 B (-50%) 2 696 B (-28%) 2 696 B (-29%)

ML-KEM1024 this work("on fly")* 3 600 B (-13%) 3 704 B (-1%) 3 704 B (-2%)
ML-KEM1024 this work("store")* 2 088 B (-50%) 2 696 B (-28%) 2 696 B (-29%)

* The reference FIPS-202 operation requires 440 bytes of memory.

There is no reference implementation of ML-KEM to which to refer. All the different
memory and speed measurements are reported in Tables 2 and 3.

One advantage of our implementation is that it can be deployed in standard products
that are already in the field. The implementation was developed in embedded C to ensure
cross-platform compatibility. Our implementation does not use any architecture-specific
method. We have tested our implementation on several embedded platforms. Memory
performances are reported in Table 2 (in bytes), and speed performances are reported in
Table 3 (in cycle on SC300 CPU with systick timer). [1, 4, 6, 9, 15, 16] present similar
work but with different approaches, especially in terms of speed performance. Some
of these studies employ architectural features of their platform or implement specific
cryptographic primitives in order to optimize memory usage. Consequently, the Kyber
reference implementation is employed as a reference for speed performance.

Our implementation integrates all variants of Kyber’s security level simultaneously.
The total code size is reduced by a factor of three as a result of this code merge. This
limits the area of code to be uploaded to devices with reduced non-volatile memory. The
security variant is selected at runtime as software cryptographic libraries.

The objective of these optimisations is to facilitate the compatibility of post-quantum
cryptography with microcontrollers utilised in the Internet of Things. In this context,
devices are constrained in terms of memory, with both volatile and non-volatile storage
being limited. For all reference measurements, the platform utilises an ARM SC 300 core,
24KB of RAM memory and operates at 20MHz. All code is compiled in high memory
optimisation with the IAR compiler.
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Table 3: Cycle for all three security levels of Kyber and ML-KEM update.

scheme implementation Keygen Encaps Decaps
Kyber512 reference 1 621 975 c 2 082 797 c 2 021 456 c
Kyber512 this work("on fly") 1 653 066 c (+2%) 1 978 020 c (-5%) 1 915 921 c (-5%)
Kyber512 this work("store") 1 693 116 c (+4%) 2 548 365 c (+22%) 2 504 448 c (+24%)

ML-KEM512 this work("on fly") 1 653 066 c (+2%) 1 652 747 c (-26%) 1 873 463 c (-8%)
ML-KEM512 this work("store") 1 693 116 c (+4%) 2 223 092 c (+6%) 2 465 373 c (+18%)

Kyber768 reference 2 592 513 c 3 299 665 c 3 196 016 c
Kyber768 this work("on fly") 2 693 535 c (+4%) 3 193 031 c (-3%) 3 085 676 c (-3%)
Kyber768 this work("store") 2 783 764 c (+7%) 4 479 157 c (+36%) 4 411 754 c (+38%)

ML-KEM768 this work("on fly") 2 693 535 c (+4%) 2 747 694 c (-20%) 3 041 541 c (-5%)
ML-KEM768 this work("store") 2 783 764 c (+7%) 4 033 820 c (+18%) 4 372 691 c (+26%)
Kyber1024 reference no available no available no available
Kyber1024 this work("on fly") 4 215 270 c 4 813 810 c 4 703 649 c
Kyber1024 this work("store") 4 373 760 c 7 100 965 c 7 021 106 c

ML-KEM1024 this work("on fly") 4 215 270 c 4 243 009 c 4 617 677 c
ML-KEM1024 this work("store") 4 373 760 c 6 530 264 c 6 981 895 c

5 Conclusions and Future Works
This paper presents several optimization techniques for memory efficiently implementing
Kyber-KEM. The techniques can be deployed in products already in the field, and result
in a significant reduction in Kyber memory usage. Specifically, the memory reduction
represents 17% for Kyber.KeyGen, while Kyber.Enc and Kyber.Dec results are similar.
The "store" implementation represents an option for hardly constrained devices as in IoT
context, but presents some slowdowns. The KeyGen function offers a significant memory
reduction (30% to 50%) without significantly reducing the speed performance. These
optimization techniques are suitable for constrained environments, such as microcontrollers
and smart card devices.

Afterwards several methods for improving CRYSTALS-Kyber speed performance are
compared, with references to relevant articles.

Firstly, we would like to present the execution time of each different activity during the
Kyber’s algorithm. Kyber execution time is shared between hashing, NTT-transformation,
modular reduction, coefficient-wise multiplication, bit-packing and other computations
(Fig 2). With this representation, we can select the most suitable part for improving
Kyber’s implementation performance.

If performance is a primary challenge, a Kyber dedicated hardware intellectual property
(I.P.) may be a viable solution [11, 17]. But, this would require, for a chip manufactures,
redesigning the platforms to integrate a Kyber hardware I.P. As previously said, a benefit
of our solution is that can be integrated in devices in the field. It is important to note that
the most time-consuming operation is the hashing process (Fig 2). Therefore, a Keccak
hardware I.P. appears to be a suitable compromise between development, integration,
surface cost, and performance gain. The performance and architecture of the Keccak
hardware IP are described in [2] by Assad et al.

Another method to enhance Kyber’s efficiency is to accelerate the NTT-transformation
process. The most common approach is to take advantage of the specific platform
architecture. The benefits of this optimization technique are platform-dependent. In [4],
Botros et al. have presented an optimization technique for the NTT-transform in Kyber
on the Cortex-M4 platform. They point to several factors for improvement, many of which



Nascimo Madieta, Guillaume Aymard, Nadia El Mrabet and Daniele Fronte 23

Hash

53%

NTT&INTT

20%

Other

25%

Bit-packing
2%

Figure 2: Kyber operation breakdown

are based on assembly language instructions. In [6] Greconici presents an optimization
of Kyber’s NTT at assembly language level on the RISC-V architecture. As in [4], the
author utilizes the instruction set and architecture to improve execution speed. [4] and [6]
have both studied the CRYSTALS-Kyber round 2 specifications on a 32-bit architecture.
Additionally, [15] and [9] have presented several optimization techniques on CRYSTALS-
Kyber for 64-bit architecture. A 64-bit ARM Cortex-A processor architecture was utilized
to enhance the efficiency of both the NTT-transform and modular reduction.

Some of these approaches can be combined with all our optimizations. In future work,
we will continue to understand how to improve the performance reduction of a masked
version of CRYSTALS-Kyber implementation and whether it introduces leaks.
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Abstract. McEliece Cryptosystem is one of the well-known cryptosystems in code-
based cryptography. It is also one of the post-quantum cryptosystems. The code-based
cryptosystem relies its security on the hardness of the syndrome decoding problem
(SDP) when the code is random. There are a lot of studies have been carried out to
determine the message or plaintext without the need to solve the hard problem, SDP.
One of the well-known alternative or non-structural attacks to retrieve the messages
is the information set decoding attack (ISD). In this paper, we would like to propose a
generic decoding algorithm based on the motivation of Prange’s algorithm to retrieve
the plaintext partially or successfully.
Keywords: McEliece Cryptosystem · Plaintext Attack

1 Introduction
Cryptography is a secure communication system where it utilizes the mathematical con-
cepts and algorithms to transform messages or plaintext in ways so that it is hard to
retrieve back the message. There are many well-known cryptosystems in the current era,
such as RSA and Elliptic Curve Cryptography (ECC). However, these cryptosystems suffer
from some weaknesses that might lead to the vulnerability of attacks such as the Wiener
attack on RSA [5]. The hard problem of RSA which is the factorization of large prime
numbers could turn out to be its weakness if there exists a quantum computer in the
future. One of the easiest solutions can be done to overcome this issue is by implementing
post-quantum cryptography in the current technology. Post-quantum cryptography is the
cryptosystem that is resistant to current computer’s and quantum computer’s attacks in the
future. There are few post-quantum cryptosystems such as multivariate, lattice-based and
code-based. One of the most common candidates for post-quantum cryptosystems is built
based on code-based cryptography such as HQC and BIKE. McEliece cryptosystem [2] is
one of the most well-known and the first motivation initiated in code-based cryptosystems
almost 40 years ago which utilizes the Goppa code (algebraic coding theory). McEliece is
one of the fourth-round candidates of KEMs algorithm standards of the National Institute
of Standards and Technology (NIST). The hard problem for McEliece is known as syndrome
decoding problem (SDP).

The ciphertext, c equation of McEliece cryptosystem is given as c = mG + e where
m ∈ F k

q is the message, G ∈ F k×n
q is a generator matrix and e ∈ F n

q is the error vector.
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We need to apply the correct decoding algorithm (solves the hard problem) to remove
the error from the ciphertext and retrieve the message correctly. McEliece is one of the
secure cryptosystems since there are no well-known attacks have been performed on Goppa
code of McEliece since 1978. It is proven to be resistant to quantum attacks. Due to
the construction of the difficult code, attacks are difficult to be perform on it. Therefore,
the security of McEliece is tight and researchers are working on attacks that can be
performed. The earliest proposal that can be worked on McEliece is the generic decoding
algorithm attacks. Information set decoding (ISD) attack [1] is one of the well-known
attack algorithms for decoding a general linear code. This attack is efficient under the
hamming metric and there are many improvised versions of it such as Lee-Brickell (1988)
[3], Leon (1988) [4], and Bernstein et.al (2011) [6]. Research has been done to improve
the previous way of performing information set decoding attacks that can have a better
complexity. Based on the motivation of ISD attack, we would like to propose a simple
version of another generic decoding attack. We utilize the attack on McEliece’s ciphertext
pattern. This proposed attack seems to be a much simpler implementation compared to
ISD attack.

1.1 Research Flow
In this paper, we provide some preliminaries that are going to be used in our paper to
propose these generic decoding attack. Then, we provide the general generic decoding
algorithm proposed by Prange (1962) [1]. We also propose a new generic decoding algorithm
by providing an alternative way to perform the generic decoding algorithm other than the
information set decoding (ISD) attack.

2 Preliminaries
In this section, we will look into the hamming metric and the hard problem which is known
as the syndrome decoding problem (SDP). Then, we explain briefly the information set
decoding attack.
Definition 1 (Linear Code). A linear code C is a subspace of the vector space Fn

q , where
Fq is a finite field with q elements of length n. If C has dimension k, it is referred to as an
[n, k]-linear code. Elements of C are called codewords.
Definition 2 (Hamming Distance). The Hamming distance d(x, y) between two codewords,
x, y ∈ Fn

q is defined as the number of positions where x and y differ. The Hamming weight,
wt(x) of a codeword, x is the number of non-zero entries in x. The minimum distance,
dmin of the code, C is the smallest hamming distance between any two distinct codewords
in C.
Definition 3. A matrix G ∈ F k×n

q is called a generator matrix of code C if its rows form a
basis of C. A matrix H is called a parity check matrix of C if C = {x ∈ F n

q : H · xT = 0}.

Definition 4 (Syndrome Decoding (SD) Problem). Given a random matrix H
(n−k)×n
q ,

a random vector, s ∈ F
(n−k)
q and an integer w > 0 as an input. The syndrome decoding

problem (q, n, k, w) needs to determine a vector e ∈ F n
q such that it satisfies wtH(e) = w

and s = eHT .
The well-known McEliece cryptosystem (code-based cryptosystem) is a public-key

cryptosystem based on the hardness of syndrome decoding problem under the Hamming
metric. It relies on binary Goppa code, a class of error-correcting code. It employs
an [n, k]-linear code with a secret generator matrix, G. The security of the McEliece
cryptosystem relies on the difficulty of decoding a received vector to the nearest codeword
in the presence of errors under the Hamming metric.
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2.1 McEliece
McEliece is one of the most popular code-based cryptosystems. The following outlines the
key generation, encryption and decryption steps involved in the McEliece cryptosystem:

2.1.1 Key Generation

1. Choose an [n, k]-linear code C with a generator matrix, G and a parity-check matrix,
H.

2. Select a random k × k invertible matrix, S over Fq.

3. Select a random n × n permutation matrix, P .

4. Compute the public generator matrix, G′ = SGP .

5. Publish G′ as the public key and keep S, G, and P as the private key.

2.1.2 Encryption

To encrypt a message, m ∈ Fk
q :

1. Represent the message, m as a vector in Fk
q .

2. Generate a random error vector, e ∈ Fn
q with weight, wt(e) ≤ t, where t is the

error-correcting capability of the code.

3. Compute the ciphertext, c = mG′ + e.

2.1.3 Decryption

To decrypt the ciphertext, c :

1. Compute c′ = cP −1 to obtain c′ = mSG + eP −1.

2. Decode c′ using the standard decoding algorithm for the code C to find the original
message, mS and the error vector, e′. (This step solves our hard problem and
removes the error vector).

3. Compute m = (mS)S−1 and obtained the message, m.

The linear code used in the generator matrix of McEliece is the Goppa code. It was
proven that the McEliece cryptosystem is vulnerable to the chosen-plaintext attack due
to some bad choices of parameters. The attack below is one of the generic decoding
algorithms that can be applied to McEliece cryptosystem based on the chosen parameters.
An Information Set Decoding (ISD) attack is a class of algorithms that used for decoding
linear codes. The general idea behind ISD is to select randomly a subset of positions,
called an information set, where the submatrix formed by these positions is assumed to be
invertible. The algorithm then attempts to solve for the error vector given the observed
syndrome. Various improvements and variants of ISD exist, each optimizing different
aspects of the algorithm to enhance the efficiency and reduce the complexity.

2.2 ISD attack
We describe the basic general concept of the ISD attack in McEliece. Given SD problem,
syndrome, s = eHT , we need to find the error vector, e. When we apply the syndrome to
McEliece ciphertext, c = mG + e will become cHT = s.
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2.2.1 ISD Algorithm

The task of the ISD algorithm is to recover the vector, m from c = mG+e, where G ∈ Fk×n
q

is a generator matrix of a random [n, k, d]-linear code, C and wtH(e) ≤ t =
⌊

d−1
2

⌋
. The

following are the steps of the ISD algorithm:

1. Randomly choose a set, K of k indices, i.e., K ⊆ {1, . . . , n} with |K| = k.

2. Compute m′ = cKG−1
K and e′ = c − m′G. If wt(e′) ≤ t, then output m′; else return

to Step 1.

As we know, the ciphertext, c = mG+e, which implies that we choose cK = mGK +eK

for ISD attack. If eK = 0k, then cK = m′GK and c − m′G = c − cKG−1
K G = e. Therefore,

c − m′G should have weight t.

2.2.2 Explanation of ISD attack

Step 1: Choosing the Information Set
Randomly select a subset, K of k indices from the set {1, . . . , n}. The subset, K is known
as the information set.
Step 2: Computing the Estimated Message and Error

• Compute the estimated message, m′ using the selected indices: m′ = cKG−1
K .

• Calculate the error vector, e′ as e′ = c − m′G.

• If the Hamming weight of e′ is lesser than or equal to t, output m′ as the recovered
information vector.

• If the condition is not met, repeat the process by returning to Step 1.

This iterative process continues until the correct information vector, m is found,
ensuring that the error vector, e′ has the desired Hamming weight, t.

3 Proposed Generic Decoding Algorithm

The algorithm we propose builds upon the some principles of ISD such as assuming error
vector, e = 0. Our proposed algorithm also incorporates novel techniques to improve
decoding efficiency under the Hamming metric. We introduce a modified selection strategy
for the error-correction mechanism. We mainly utilize the number theory concepts such as
using modular arithmetic (mod q).

Let the ciphertext, c of McEliece as c = mG + e ∈ F n
q where G is a generator matrix,

m is the plaintext or message, and e is the error vector. Then, we have,
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c = mG + e

[c1, c2, ..., cn] = [m1, m2, ..., mk]




g11 g12 g13 · · · g1n

g21 g22 g23 · · · g2n

g31 g32 g33 · · · g3n

...
...

... . . . ...
gk1 gk2 gk3 · · · gkn




+ [e1, e2, ..., en]

[c1, c2, ..., cn] = [m1, m2, ..., mk]




g11 g12 g13 · · · g1n

g21 g22 g23 · · · g2n

g31 g32 g33 · · · g3n

...
...

... . . . ...
gk1 gk2 gk3 · · · gkn




+ [e1, e2, ..., en] (mod q)

[c1, c2, ..., cn] = [m1, m2, ..., mk]




g11 g12 g13 · · · g1n

g21 g22 g23 · · · g2n

g31 g32 g33 · · · g3n

...
...

... . . . ...
gk1 gk2 gk3 · · · gkn




+ [e1, e2, ..., en] − q[z1, z2, ..., zn]

(1)

Based on the equation (1), we look into our proposed decoding algorithm by looking
specifically into the position of ciphertext, ci where i = 1, ..., n as below:

ci = [m1, m2, ..., mk]




g1i

g2i

g3i

...
gki




+ ei − qzi

ci = m1g1i + m2g2i + m3g3i + ... + mkgki + ei − qzi (2)
ci = mGi + ei − qzi (3)

Theorem 1 (Decoding Technique). Let gBi be the largest element in {g1i, g2i, g3i, ..., gki}
and gBi ∼ 2B. Then, we have 2B ≤ mGi ≤ 2B+1, and 2B−1 ≤ zi ≤ 2B. Assume the
elements in {g1i.g2i, ..., gki} are not exponentially large and ei = 0. Then, we can brute
force the non-negative values of zi ∈ [2B−1, 2B] to obtain the message, m′

p ∈ Z where
p = 1, ..., k.
Proof. For each brute force of values zi, do Yp ≡ A (mod gpi) where p = 1, 2, ..., k and
A = mGi = ci +qzi. For each element of gpi from {g1i.g2i, ..., gki}, do m′

p = A−Yp

gpi
(mod q).

After obtaining m′ = m′
p for p = 1, 2, ..., k, check whether wt(e) ≤ t by putting back the

message, m′ into e = c − m′G.

Using this theorem, we can determine the message, m partially or fully successfully
with the correct choices of q-values. If we choose a small q, we can use this generic decoding
technique successfully. This method can be done successfully for the assumption of the
error vector, ei = 0 using this simple algebra concept. After obtaining the message string
fully, m′, we can put it back into the e = c − m′G and check whether it satisfies wt(e) ≤ t.

3.0.1 Proposed Algorithm

The objective of proposed algorithm is to recover the vector, m from c = mG + e, where
G ∈ Fk×n

q is a generator matrix of a random [n, k, d]-linear code, C and wt(e) ≤ t =
⌊

d−1
2

⌋
.
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The following are the detailed steps of the proposed algorithm:

1. Randomly look into the ciphertext, c = (c1, ..., cn) and choose one of the ci where
i = 1, 2, ..., n.

2. Choose the non-negative value of zi ∈ [2B−1, 2B ] according to the Theorem 1. Then,
compute A = ci + qzi.

3. Compute Yp ≡ A (mod gpi) where p = 1, 2, ..., k.

4. Compute m′
p = A−Yp

gpi
(mod q) for each element of gpi from {g1i.g2i, ..., gki} and

create the message vector, m′.

5. Repeat same step 1-4 for all possible ci and zi where i = 1, 2, ..., n.

6. Compare all the message vector, m′ we obtained from ci and choose the similar
message pattern, m′ as our message, m.

7. Finally, compute e = c − m′G and check whether wt(e) ≤ t.

4 Conclusion
In this paper, we proposed a new generic decoding algorithm based on the motivation
of ISD attack [1]. We used some of the simple principles that had been utilized in the
ISD attack. We also used some simple algebra techniques based on the number theory
to propose this attack to retrieve the correct message, m. Since this was a novel idea
in code-based cryptography, we proposed this first approach that can be extended and
improved further in the future. Some problems had been discovered in this proposed
generic algorithm such as the proposed theorem can be modified further by providing some
conditions so that the theorem could be used in all cases. However, this attack can be
implemented into all other code-based cryptosystems for a suitable ciphertext pattern.
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Abstract.
A Multivariate Public-Key Cryptosystem (MPKC) is a potential candidate for post-
quantum cryptography. The security of an MPKC relies on the difficulty of solving
systems of multivariate quadratic (MQ) polynomial equations over finite fields. Specif-
ically, the MQ problem, which involves solving such a system of quadratic polynomials,
is a significant research area in this field. This study focuses on solving the MQ
problem using a solution approach based on the determinant and inverse of the
modulo matrix. The process involves verifying the existence of the determinant and
the invertibility of the matrix public key, denoted as P. The candidate solutions
are obtained by multiplying the inverse of the matrix by a vector, expressed as
x = P−1B. Additionally, we provide an example from an established MPKC to
illustrate our proposed method. In this study, we introduce a novel method for solving
MQ problems based on a system of non-linear equations and matrices. The process
involves verifying the existence of the determinant and the invertibility of the matrix
public key, P. The idea is to apply the method of Px = B, where the matrix P
can be either a square or a non-square matrix. The result shows that the possible
candidates can be obtained by solving x = P−1B.
Keywords: Post-Quantum Cryptography · Multivariate Public-Key Cryptosystem
· Multivariate Quadratic Problem · Modulo inverse matrix · Square matrix ·
Determinant modulo matrix

1 Introduction
Post-quantum cryptography (PQC) concerns cryptographic methods specifically developed
to withstand the potential risks presented by quantum computers. Classical cryptographic
systems, such as RSA [24] and ECC (Elliptic Curve Cryptography), depend on the com-
putational complexity of such problems as integer factorization and discrete logarithms.
Nevertheless, with the emergence of quantum computers with adequate computational
capacity, these difficulties can be easily solved by employing algorithms such as Shor’s
algorithm [25]. Consequently, classical encryption methods become susceptible to compro-
mise. PQC aims to provide cryptographic methods that maintain their security even in
the event of widespread adoption of quantum computing. This field concentrates explicitly
on alternative mathematical frameworks hypothesised to possess a high level of resilience
against quantum attacks.
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To address the possible threat posed by quantum computing, organizations like the
National Institute of Standards and Technology (NIST) have been actively involved
in establishing standardized cryptographic algorithms that can withstand attacks from
quantum computers. In 2016, NIST began a multi-round process intending to assess and
develop standard quantum-resistant public-key cryptography algorithms. The main goal is
to build strong and secure cryptography standards prior to the emergence of widespread
quantum computers [1, 2, 23].

The need to develop Post-Quantum Cryptography (PQC) arises from the swift progress
in quantum computing. Despite the absence of existing large-scale quantum computers,
the potential threat they provide has led to the implementation of preventive actions
[4]. Governments, industry, and academics are aggressively pursuing the research and
standardization of Post-Quantum Cryptography (PQC) to guarantee data security that
remains effective in the face of future advancements in quantum computing.

Critical families of post-quantum cryptographic algorithms include: Lattice-based
cryptography utilizes the hardness of lattice problems [21], such as the Shortest Vector
Problem (SVP) [18] and Learning With Errors (LWE) [22]. Code-based cryptography
is based on the difficulty of decoding random linear codes, with notable examples being
the McEliece and Niederreiter cryptosystems [26]. Multivariate public-key cryptography
involves solving systems of multivariate quadratic equations, which are problematic for
both classical and quantum computers [10]. Hash-based cryptography relies on the security
of hash functions, with schemes like the Merkle signature scheme offering strong post-
quantum security [5]. Isogeny-based cryptography utilizes the difficulty of finding isogenies
between elliptic curves, representing a relatively new area of post-quantum cryptography
[9].

Recent research in multivariate public-key cryptosystems (MPKCs) has stimulated
the development of new methods for solving multivariate polynomial equations over finite
fields, including techniques such as XL [6–8, 27] and Gröbner basis methods F4 and F5
[11, 12]. Many MPKCs utilize quadratic polynomials, making the challenge of solving
systems of multivariate quadratic (MQ) polynomial equations, known as the MQ problem,
an NP-hard [14, 15]. The security of MPKCs relies on the computational difficulty of
solving the MQ problem, making efficient solutions to this problem a crucial area of focus.

Matrix operations become highly relevant when addressing the MQ problem. Matrix
operations are essential in mathematics, computer science, and engineering, offering effective
tools for addressing intricate problems involving equations, transformations, and related
tasks. Specifically, the concept of the matrix inverse plays a critical role, particularly in
linear algebra, where it is used to solve systems of linear equations. When these ideas are
applied to modular arithmetic, the inverse modulo matrix becomes a crucial structure with
numerous applications in cryptography, coding theory, and computational mathematics.
By leveraging these matrix operations, researchers can develop more efficient methods for
tackling the MQ problem, thereby enhancing the security and performance of MPKCs.

In this paper, we introduce the exploration of solving the MQ problem by transforming
the system of MQ polynomial into a system of Px = B. Given the system of MQ
polynomial in two cases:

1. The system P is a square n×n matrix. Then, the system can be solved as x = P−1B
to obtain the possible candidate of the solution.

2. The system P is not a square matrix, where the number of equations is less than
monomials or the number of equations exceeds monomials.

(a) If the number of rows is less than the number of monomials, then additional
rows must be added to match the number of monomials. Furthermore, each
element in the rows must be neither identical nor proportional to any other
row.
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(b) If the number of rows exceeds the number of monomials, omit the excess rows
to form a square matrix and solve it as in case 1.

1.1 Comparison of Performance Between Our Method and Existing
Methods

Table 1: The performance of our method in comparison to existing methods.
Name of method Structural Depen-

dency
Computational
Complexity

Potential Security
Implication

Our method Yes (see section 4) Polynomial High if it falls under
the defined struc-
ture

XL method No Polynomial High if the exact di-
mension of ID is ≥
T − 1, see [7].

Gröbner basis No Polynomial High if Buchberger
criterion is satisfied,
see [12, 13].

Table 1 compares the performance of our approach with existing methods in terms of
structural dependency, computational complexity, and potential security implications. The
potential security implication refers to the attack on the system of equations.

2 System of Linear Equations and Matrices
In science and mathematics, information is frequently organized in rows and columns
to form rectangular arrays known as matrices. These matrices often represent tables of
numerical data derived from physical observations but also appear in various mathematical
contexts. This is particularly important for developing computer programs designed to
solve systems of linear equations, as computers are highly efficient at manipulating arrays
of numerical data. Every system of linear equations will either have no solutions, exactly
one solution, or infinitely many solutions [3].

2.1 Matrix Form of a Linear System
Matrix multiplication is a crucial tool in solving systems of linear equations. Consider a
system of m equations with n unknowns [3].

a11x1 + a12x2 + . . . + a1nxn = b1

a21x1 + a22x2 + . . . + a2nxn = b2

...
am1x1 + am2x2 + . . . + amnxn = bm

Given that two matrices are considered equal if and only if their corresponding entries
are similar, we can simplify the system of equations by replacing the m equations with a
single matrix equation.
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


a11x1 + a12x2 + . . . + a1nxn

a21x1 + a22x2 + . . . + a2nxn

...
am1x1 + am2x2 + . . . + amnxn


 =




b1
b2
...

bm




The left side of this equation can be expressed as the product of a m × 1 matrix.




a11 a12 · · · a1n

a21 a22 · · · a2n

...
... . . . ...

am1 am2 · · · amn







x1
x2
...

xn


 =




b1
b2
...

bm




If we denote these matrices as P , x, and B accordingly, the original system of m equations
with n unknowns has been exchanged with the established matrix equation Px = B.
The matrix P in this equation is referred to as the coefficient matrix of the system. The
equation Px = B, where P and B are specified, defines a linear system that needs to be
solved for x.

2.2 Invertibility of a Matrix
For this solution method, the use of an inverse matrix is required.

Theorem 1. [3] Let P be a square matrix. If R is a square matrix satisfying RP = I,
then R = P−1.

Proof. Assume that RP = I. If we can show that P is invertible, the proof can be
completed by multiplying RP = I on both sides by P−1 to obtain

RPP−1 = IP−1

RI = IP−1

R = P−1

The matrix is invertible if and only if the determinant has a multiplicative inverse, defined
in Lemma 1.

Lemma 1. [3] Let M be a ring with unity. Let P be a square matrix of order n. Then,
P ∈ Mn×n is invertible if and only if its determinant is invertible in M .

Proof. Let P be invertible with M = P−1. Let 1M denote the unity of M . Let In denote
the unit matrix of order n. Then,

1M = det(In)
= det(PM)
= det(P)det(M)

This shows that det(M) = 1
det(P) .
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2.3 Solving the System of Equations by Matrix Inversion
In addition to the well-known methods of Gaussian and Gauss-Jordan elimination, the
following theorem introduces an additional approach to solving specific linear problems.
Theorem 2. [3] If P is an invertible n × n matrix, then for each n × 1 matrix B, the
system of equations Px = B has exactly one solution, namely, x = P−1B.
Proof. Since P(P−1B) = B, it follows that x = P−1B is a solution of Px = B. To show
that this is the only solution, we will assume that x0 is an arbitrary solution and then
show that x0 must be the solution P−1B.
If x0 is any solution, then Px0 = B. Multiplying both sides by P−1, we obtain x0 =
P−1B.

3 Preliminaries on Multivariate Quadratic Polynomials
This section reviews the basic terminology and cryptographic primitives utilised in multi-
variate cryptography.

3.1 Matrix Representation
Definition 1. (Multivariate Quadratic Polynomials) [10]
Let Fq be a finite field with q elements. We denote m as the number of equations and n as
the number of variables. A system P = (p1, . . . , pm) of multivariate quadratic polynomials
is defined as

p1(x1, . . . , xn) =
n∑

i=1

n∑

j=1
t
(1)
ij · xixj +

n∑

i=1
t
(1)
i · xi + t

(1)
0

p2(x1, . . . , xn) =
n∑

i=1

n∑

j=1
t
(2)
ij · xixj +

n∑

i=1
t
(2)
i · xi + t

(2)
0

...

pm(x1, . . . , xn) =
n∑

i=1

n∑

j=1
t
(m)
ij · xixj +

n∑

i=1
t
(m)
i · xi + t

(m)
0 .

Definition 2. Let P(x1, . . . , xn) be a system of multivariate quadratic polynomials.
a) The lexicographical ordering of monomials is defined as the order in which the

monomials (without the coefficient) would exist in terms of words in an alphabet
x1, x2, . . . , xn letters [19].

b) We define the chosen-lexicographical ordering of monomials, which are listed
from two variables to a single variable and are subject to the priority of solving a
variable.

Throughout this research, Definition 2 b) will be utilized to convert the system of
polynomials into the Macaulay matrix, which will then be solved by Gaussian elimination.

The chosen-lexicographical ordering of monomials emphasizes the priority of solving a
variable. As an illustration, assume x3 to be eliminated first. It is possible to obtain a
univariate polynomial in terms of x3 with a degree of at most d. The univariate polynomial
over the finite field is then solved. As a result, the possible value(s) of x3 are obtained. To
that end, we will now substitute x3 to obtain polynomials with fewer variables.
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Definition 3. [10] (Multivariate Quadratic Problem) Let Fq be a finite field with q
elements. Given a system P = (p1(x), . . . , pm(x)) of m multivariate quadratic polynomials
in n variables, find a vector x = (x1, . . . , xn) such that

p1(x) = . . . = pm(x) = 0.

Theorem 3. [10] Let F be a finite field with q elements and degree d < q. Then, there

exist
(

n + d − 1
d

)
monomials of degree d in F[x1, . . . , xn]. The number of monomials of

degree ≤ d in F[x1, . . . , xn] is given by
(

n + d

d

)
.

Proof. 1. The number of monomials of degree d is obtain by choosing d out of n element
of x1, . . . , xn, with repetition.

2. The elements in polynomial of degree ≤ d are elements from the set {x1, . . . , xn, 1},
with repetition.

Theorem 4. The number of monomials of degree ≤ d in Fq with q elements is given by(
n + d

d

)
. The number of monomials with degree d with different elements is given by

(
n

d

)
.

Proof. 1. The total number of monomials of degree ≤ d is according to n elements from
the set {x1, . . . , xn, 1}, with repetition.

2. The total number of monomials of degree ≤ d is according to n elements from the
set {x1, . . . , xn, 1}, without repetition.

A system of MQ polynomial equations is resolved by transforming the polynomi-
als in the Macaulay matrix known as matrix M , which is constructed from equations
(p1(x), . . . , pm(x)) = 0 (Definition 3) and reduced using the Gaussian elimination procedure.
The number of column vectors in the Macaulay matrix M is the number of the monomials
of degree ≤ d, which is

(
n + d

d

)
.

3.2 General Workflow of MPKC
Multivariate public key cryptosystem based on the MQP is constructed from an invertible
quadratic map F : Fn → Fm and two invertible affine (or linear) maps S : Fm → Fm and
T : Fn → Fn. The public key is in the form of P = S ◦ F ◦ T where S, F and T are the
private keys.

3.2.1 General Encryption Scheme (m ≥ n)

To create a comprehensive encryption scheme, it is necessary to determine the corresponding
secret affine maps, S and T , and the central map, F . The fundamental encryption scheme,
as outlined in [10], can be succinctly expressed as follows.
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Key Generation:

S =




s11 s12 · · · s1m

s21 s22 · · · s2m

...
... . . . ...

sm1 sm2 · · · smm




T =




t11 t12 · · · t1n

t21 t22 · · · t2n

...
... . . . ...

tn1 tn2 · · · tnn




F =





f (1)(x1, x2, . . . , xn) =
n∑

i=1

n∑

j=1
α

(1)
ij xixj +

n∑

i=1
β

(1)
i xi +

n∑

i=1
γ

(1)
i

f (2)(x1, x2, . . . , xn) =
n∑

i=1

n∑

j=1
α

(2)
ij xixj +

n∑

i=1
β

(2)
i xi +

n∑

i=1
γ

(2)
i

...

f (m)(x1, x2, . . . , xn) =
n∑

i=1

n∑

j=1
α

(m)
ij xixj +

n∑

i=1
β

(m)
i xi +

n∑

i=1
γ

(m)
i

Encryption: To encrypt a message x ∈ Fn, one simply computes P(x) = z.

P = S ◦ F ◦ T (x)
w = T (x)
y = F(w)
z = S(y)

The ciphertext of the message x is z ∈ Fm.

Decryption: To decrypt the ciphertext z ∈ Fm, one computes P−1 = x recursively.

y = S−1(z)
w = F−1(y)
x = T −1(w)

x ∈ Fn is the plaintext corresponding to the ciphertext z.

Proof of correctness:

T −1 ◦ F−1 ◦ S−1(z) = T −1(F−1(S−1(z)))
= T −1(F−1(y))
= T −1(w)
= x
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3.2.2 Standard Attacks

There are two types of standard attacks against multivariate public key schemes.

1. Direct Attack: This kind of attack concentrates on solving the public equation
P(x) = z as an instance of the MQP directly. The examples of direct attack are F4
and F5 algorithm (Gröbner basis) [16, 20] and XL algorithm [7, 27].

2. Structural Attack: A structural attack requires the unique structure of the
central map of a multivariate cryptography scheme to endeavour to recover the
private key—for example, a Linearization equation attack, a MinRank attack, or a
Differential attack.

4 New Method for Solving MQP
In this section, we will present the determinant function, which assigns a real integer to a
square matrix. It is a real-valued function of a matrix variable. The determinant will have
significant implications for the theory of systems of linear equations. It will also provide
us with a precise formula for the inverse of a matrix that can be inverted.

Definition 4. [3] If P is a square matrix, then the minor of entry aij is denoted by Mij

and is defined to be the determinant of the submatrix that remains after the ith row and
jth column are deleted from P. The number (−1)i+jMij is denoted by Cij and is called
the cofactor of entry aij .

In a more general sense, we define the determinant of a n × n matrix as

det(P) = a11C11 + a12C12 + · · · + a1nC1n.

This process of determining the value of det(P) (in Definition 4) is referred to as cofactor
expansion along the first row of matrix P.

Definition 5. The determinant of an n × n matrix P can be computed by multiplying
the entries in any row (or column) by their cofactors and adding the resulting products;
that is, for each 1 ≤ i ≤ n and 1 ≤ j ≤ n,

det(P) = a1jC1j + a2jC2j + · · · + anjCnj

(cofactor expansion along the jth column)

and

det(P) = ai1Ci1 + ai2Ci2 + · · · + ainCin

(cofactor expansion along the ith row)

Note that we may choose any row or any column.

Definition 6. [3] If P is any n × n matrix and Cij is the cofactor of aij , then the matrix



C11 C12 · · · C1n

C21 C22 · · · C2n

...
... . . . ...

Cn1 Cn2 · · · Cnn




is called the matrix of cofactor from P. The transpose of this matrix is called the adjoint
of P and is denoted by adj(P).
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Definition 7. [17] Let P be an n × n matrix with integer entries, and let q be an integer
modulo. If gcd(det(P, q)) = 1, then P is invertible modulo q. This means there exists an
n × n matrix M with integer entries such that PM = In (mod q), where In is the n × n
identity matrix.

Remark 1. Formally, if gcd(det(P), q) = 1, then there exists an n × n matrix M such that
PM = In (mod q) or P is invertible modulo q.

To obtain the formula for the inverse of an invertible matrix, it is essential to use the
important fact that a square matrix P is invertible if and only its determinant, det(P) is
non-zero.

Theorem 5. (Inverse of a Matrix using its Adjoint)[3]. If P is an invertible matrix, then

P−1 = 1
det(P)adj(P)

Proof. We first show that

Padj(P) = det(P)I

Consider the product

Padj(P) =




a11 a12 · · · a1n

a21 a22 · · · a2n

...
... . . . ...

ai1 ai2 · · · ain

...
... . . . ...

an1 an2 · · · ann







C11 C21 · · · Cj1 · · · Cn1
C12 C22 · · · C2n · · · Cn1

...
... . . . ... . . . ...

C1n C2n · · · Cjn · · · Cnn




The entry in the ith row and jth column of the product Padj(P) is

ai1Cj1 + ai2Cj2 + · · · + ainCjn (1)

If i = j, then (1) is the cofactor expansion of det(P) along the ith row of P, and if i ̸= j,
then the a′s and the cofactors come from different rows of P, so the value of (1) is zero.
Therefore,

Padj(P) =




det(P) 0 · · · 0
0 det(P) · · · 0
...

... . . . ...
0 0 · · · det(P)


 = det(P)I (2)

Since det(P) is invertible, thus det(P) ̸= 0. Therefore, Equation (2) can be written as

1
det(P) [Padj(P)] = I, or P[ 1

det(P)adj(P)] = I

Multiplying both sides by P−1 yields

P−1 = 1
det(P)adj(P)

Breaking the MQ polynomial is to obtain the value of candidates for plaintext from a
given public system P and ciphertext z.
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Lemma 2. Let P be r × s matrix. If r = s, then P is invertible.

Proof. Case 1: r ̸= s and r < s.
Given

[P]r×s =




c11 c12 · · · c1s

c21 c22 · · · c2s

...
... . . . ...

cr1 cr2 · · · crs




Then, we add k additional rows so that (r + k) = s, that is, a square matrix P is formed.

P =




c11 c12 · · · c1s

c21 c22 · · · c2s

...
... . . . ...

cr1 cr2 · · · crs

c(r+1)1 c(r+1)2 · · · c(r+1)s

...
... . . . ...

c(r+k)1 c(r+k)2 · · · c(r+k)s




Case 2: r ̸= s and r > s.
Given

[P]r×s =




c11 c12 · · · c1s

c21 c22 · · · c2s

...
... . . . ...

cr1 cr2 · · · crs




We exclude excess k rows such that (r − k) = s, that is, a square matrix P is formed.

P =




c11 c12 · · · c1s

c21 c22 · · · c2s

...
... . . . ...

c(r−k)1 c(r−k)2 · · · c(r−k)s

...
... . . . ...

c(r−1)1 c(r−1)2 · · · c(r−1)s

cr1 cr2 · · · crs




=




c11 c12 · · · c1s

c21 c22 · · · c2s

...
... . . . ...

c(r−k)1 c(r−k)2 · · · c(r−k)s




Now, this square matrix P is a ring with unity. Then, by Lemma 1 and Theorem 1, this P
is invertible for both Case 1 and Case 2.

4.1 Technique of solving the MQP

The procedure for solving MQ polynomials based on our method is shown below in
Algorithm 1.



42 A New Generic Strategy for Solving Multivariate Quadratic Polynomials

Algorithm 1 Solving the Multivariate Quadratic polynomials
Input: The quadratic polynomial P = (p1(x), . . . , pm(x)) in a finite field Fq with n

variables of (x1, . . . , xn).
Output: The solution in Fq of the system of the equations p1(x) = . . . = pm(x) = 0.

1: Transform the polynomial P into the matrix equation Px = B (see Section 2.1).
2: if the matrix P is in square matrix then
3: the system can be solved using the theorem in Section 2.3.
4: else if the matrix P is a non-square matrix, and the number of rows is less than

columns then
5: additional rows must be added to match the number of columns where each element

in the rows must not be identical or proportional as any other rows.
6: else if the matrix P is a non-square matrix, and the number of rows is greater than

columns then
7: omit the excess rows to form a square matrix, and solve it as in Section 2.3.
8: end if

The efficient procedure for identifying additional rows ensures that no rows or columns are
identical or proportional.

Theorem 6. [3] If P is a square matrix with two proportional rows and two proportional
columns, then det(P) = 0.

Proof. See [3].

Theorem 7. Let P = (p1(x), . . . , pm(x)) be a quadratic polynomial in a finite field Fq

with n variables of (x1, . . . , xn). Then, a system of the equations p1(x) = . . . = pm(x) = 0
admits a solution in Fq.

Proof. We begin by considering the system of equation P in two cases.
Case 1: P is a square matrix.
If P is a square matrix, then the system of equation P is solved as in Section 2.3.

Case 2: P is non-square matrix.
If P is not a square matrix, either the number of rows less than columns or the number
of rows greater columns, then the system of equations P can be solved by Lemma 2 and
followed by Section 2.3.

5 Toy Example
For illustrative purposes, an example where public system P consisting of a multivariate
quadratic polynomial over the field Fq is provided, featuring randomly chosen coefficients.
We give an example for the case where the matrix P is non-square. It can be categorized
into two types: the number of rows exceeds the number of columns, or the number of rows
is less than the number of columns.

1. If the number of rows is less than the number of columns, additional rows must
be added to match the number. Furthermore, each element in the rows must be
coprime or undergo an arithmetic operation that ensures they are neither identical
nor proportional to any other row.

2. If the number of rows exceeds the number of columns, omit the excess rows to form
a square matrix and then solve it using Theorem 2.
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Example 1. Suppose the message vector x = (x1, x2, x3) = (2, 3, 5) is encrypted into the
ciphertext z = (6, 2, 1, 6, 4, 1). Then, we are given the public system P(x) over the field F7:

P(x) =





2x1x2 + 1x1x3 + 5x2x3 + 4x2
1 + 4x2

2 + 2x2 + 2x2
3 + 5x3

2x1x2 + 1x1x3 + 4x2x3 + 4x2
1 + 3x2

2 + 2x2 + 2x2
3 + 2x3

2x1x2 + 4x1x3 + 6x2
1 + 1x1 + 6x2

2 + 4x2 + 4x2
3 + 6x3

1x1x2 + 3x2x3 + 1x2
1 + 6x2

2 + 6x2
3 + 4x3

2x1x2 + 2x1x3 + 5x2x3 + 5x1 + 3x2
2 + 3x2 + 3x2

3
3x1x2 + 2x1x3 + 1x2x3 + 1x2

1 + 1x1 + 4x2 + 2x2
3 + 4x3

Then, we conduct the following procedure.
Transforming the system P(x) and ciphertext vector into the single matrix equation




2x1x2 + 1x1x3 + 5x2x3 + 4x2
1 + 4x2

2 + 2x2 + 2x2
3 + 5x3

2x1x2 + 1x1x3 + 4x2x3 + 4x2
1 + 3x2

2 + 2x2 + 2x2
3 + 2x3

2x1x2 + 4x1x3 + 6x2
1 + 1x1 + 6x2

2 + 4x2 + 4x2
3 + 6x3

1x1x2 + 3x2x3 + 1x2
1 + 6x2

2 + 6x2
3 + 4x3

2x1x2 + 2x1x3 + 5x2x3 + 5x1 + 3x2
2 + 3x2 + 3x2

3
3x1x2 + 2x1x3 + 1x2x3 + 1x2

1 + 1x1 + 4x2 + 2x2
3 + 4x3




=




6
2
1
6
4
1




The m × 1 matrix on the left side of this equation can be written as Px = z, where




2 1 5 4 0 4 2 2 5
2 1 4 4 0 3 2 2 2
2 4 0 6 1 6 4 4 6
1 0 3 1 0 6 0 6 4
2 2 5 0 5 3 3 3 0
3 2 1 1 1 0 4 2 4







x1x2
x1x3
x2x3
x2

1
x1
x2

2
x2
x2

3
x3




=




6
2
1
6
4
1




At this point, we observed that the matrix P is non-square. Therefore, we added three
rows to transform matrix P into a square matrix. The elements in the additional rows are
random numbers and not identical or proportional to any other rows. The new matrix P
is as follows.




2 1 5 4 0 4 2 2 5
2 1 4 4 0 3 2 2 2
2 4 0 6 1 6 4 4 6
1 0 3 1 0 6 0 6 4
2 2 5 0 5 3 3 3 0
3 2 1 1 1 0 4 2 4
4 3 2 0 0 2 0 1 2
4 6 1 2 1 1 2 2 1
2 5 1 6 3 4 0 3 3







x1x2
x1x3
x2x3
x2

1
x1
x2

2
x2
x2

3
x3




=




6
2
1
6
4
1
4
4
2




Now, we observed that the new P is a square matrix 1. The determinant of the new matrix

1If the system of equations P originally gives a square matrix, then the matrix P can be solves directly
using Theorem 2.
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P is non-zero and coprime to the modulus q = 7, therefore P is invertible.

P−1 =




5 4 1 3 1 5 5 2 5
3 5 6 4 6 0 4 6 0
2 6 3 3 5 4 3 2 5
5 2 2 0 0 0 5 3 3
6 4 4 3 5 4 6 5 4
5 4 6 0 3 2 1 2 1
6 3 0 4 4 0 5 3 4
3 3 1 0 0 0 1 6 0
5 1 4 6 2 5 1 1 5




Thus, the solution of this system is

x = P−1z =




5 4 1 3 1 5 5 2 5
3 5 6 4 6 0 4 6 0
2 6 3 3 5 4 3 2 5
5 2 2 0 0 0 5 3 3
6 4 4 3 5 4 6 5 4
5 4 6 0 3 2 1 2 1
6 3 0 4 4 0 5 3 4
3 3 1 0 0 0 1 6 0
5 1 4 6 2 5 1 1 5







6
2
1
6
4
1
4
4
2




=




6
3
1
4
2
2
3
4
5




Therefore, we obtain the solution x1 = 2, x2 = 3 and x3 = 5.

In cases where the number of rows exceeds the number of columns, the excess row(s) can
be omitted to form a square matrix.

Example 2. Suppose the message vector x = (x1, x2) = (4, 7) is encrypted into the
ciphertext x = (2, 11, 12, 5, 7, 1, 0). Then, we are given the public system P(x) over the
field F17:

P(x) =





1x1x2 + 6x2
1 + 4x1 + 2x2

2 + 10x2,
13x1x2 + 12x2

1 + 2x1 + 11x2
2 + 14x2,

1x1x2 + 1x2
1 + 6x1 + 15x2

2 + 6x2,
2x1x2 + 12x2

1 + 11x1 + 8x2
2 + 5x2,

14x1x2 + 0x2
1 + 1x1 + 14x2

2 + 14x2,
6x1x2 + 8x2

1 + 12x1 + 12x2
2 + 14x2,

3x1x2 + 8x2
1 + 12x1 + 12x2

2 + 10x2

Subsequently, we perform the following procedure.
Transforming the system P(x) and the ciphertext vector into a single matrix equation




1x1x2 + 6x2
1 + 4x1 + 2x2

2 + 10x2
13x1x2 + 12x2

1 + 2x1 + 11x2
2 + 14x2

1x1x2 + 1x2
1 + 6x1 + 15x2

2 + 6x2
2x1x2 + 12x2

1 + 11x1 + 8x2
2 + 5x2

14x1x2 + 0x2
1 + 1x1 + 14x2

2 + 14x2
6x1x2 + 8x2

1 + 12x1 + 12x2
2 + 14x2

3x1x2 + 8x2
1 + 12x1 + 12x2

2 + 10x2




=




2
11
12
5
7
1
0



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Transform the matrix on the left-hand side into the form Px = z.



1 6 4 2 10
13 12 2 11 14
1 1 6 15 6
2 12 11 8 5
14 0 1 14 14
6 8 12 12 14
3 8 12 12 10







x1x2
x2

1
x1
x2

2
x2




=




2
11
12
5
7
1
0




At this stage, we noticed that the matrix P is non-square matrix with two extra rows.
Therefore, we exclude these extra rows to transform P into a square matrix. Then, the
new matrix P is as follows.




1 6 4 2 10
13 12 2 11 14
1 1 6 15 6
2 12 11 8 5
14 0 1 14 14







x1x2
x2

1
x1
x2

2
x2




=




2
11
12
5
7




The determinant of the new matrix P is non-zero and coprime to the modulus 17; therefore,
P is invertible.

P−1 =




7 6 2 13 9
15 10 10 3 14
1 5 5 4 15
7 11 7 9 13
9 13 4 2 11




Thus, the solution of this system is

x = P−1z =




7 6 2 13 9
15 10 10 3 14
1 5 5 4 15
7 11 7 9 13
9 13 4 2 11







2
11
12
5
7




=




11
16
4
15
7




Therefore, we obtain the solution x1 = 4 and x2 = 7.

Conclusion
We presented a new approach for solving the Multivariate Quadratic (MQ) problem using
systems of non-linear equations and matrices. Our finding enables one to identify the matrix
invertibility of the public key by determining its non-zero determinant and coprimality
to the modulus. This strategy transformed the system of MQ polynomials into a system
represented as Px = B. We considered two distinct scenarios: one where the matrix P
is square and another where it is non-square. For the square matrix case, the solution is
straightforwardly obtained by evaluating the inverse of P and multiplying it by the vector
B. For the non-square matrix, the approach involves adding more rows to the matrix to
achieve a square form when there are fewer rows than columns or reducing the matrix by
omitting excess rows when there are more rows than columns. This transformation not
only simplifies the problem but also utilizes the wide range of tools and methods available
for solving non-linear systems. Therefore, it enhances the efficiency and applicability of
the solution in various domains, including cryptography and computational mathematics.
This exploration opens new opportunities for further research and practical applications of
solving MQ problems through linear algebraic techniques.
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Abstract. Since its inception in 1994, Shor’s Algorithm has given an avenue to render
RSA modulo factoring theoretically in real time. After 3 decades, this paper will
investigation its practicality to factor a typical RSA modulo in polynomial time.
A new breakthrough via a simple algorithm is still very much needed to harness
quantum computing prowess in RSA factoring.
Keywords: Shor’s Algorithm · Quantum Computer · Integer Factorization Problem

1 Introduction
Although any integer number has a unique decomposition into a product of primes, finding
the prime factors is believed to be a hard problem. In fact, the security of our online
transactions rests on the assumption that factoring integers with a thousand or more
digits is practically impossible. This assumption was challenged in 1995 when Peter Shor
proposed a polynomial-time quantum algorithm for RSA modulo factoring problem. Shor’s
Algorithm is arguably the most dramatic paradigm shift on how a quantum computing
can change security perception on integer factoring to be tractable. A corner stone of the
Shor’s Algorithm is by far concentrated on its modular exponentiation that is the most
computational component in time and space [10].

Current record on breaking RSA is around 800-bit modulo N as shown by a classical
computer in RSA number challenge. An industrial standard operates on 2048-bit RSA
modulo. A viable quantum computer using a practical Shor’s Algorithm should be able
to progressively factor a larger candidate of traditional RSA modulo N as the number of
qubits grow inline with quantum computer progress. In the last 20 years, several reseachers
have managed to factor an increasingly larger numbers. Unfortunately, these numbers
carry only one or two bit security level which can be easily factor by a classic algorithm.

At the same time there is a need to build a qubit arithmetic calculator such as in [2] to
handle an m-qubit quantum computer where m < 80 which matches current 64-bit CPU.
This calculator can be running in sequential, parallel or distributed. At the same time,
Intel has built a quantum processor called Tunnel Falls that will offer 12-qubit computing
prowess. Intel believes its control chips and chip interconnect technology will be necessary
parts of an overall system.

Scaling up quantum computers to attain substantial speedups over classical computing
requires a significant fault tolerance [26]. Conventionally, protocols for fault-tolerant
quantum computation demand excessive space overheads by using many physical qubits
for each logical qubit.

One bit of error in running a secure cryptographic operation will produce an unrecov-
erable wrong output. Using plausible physical assumptions for large-scale planar grid of
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qubits with nearest-neighbour connectivity, a characteristic physical gate error rate of 10−3,
a surface code cycle time of 1 microsecond, and a reaction time of 10 microseconds, [11]
has estimated a need to use 3m+ 0.002m log2 m logical qubits, 0.3m3 + 0.0005m3 log2 m
Toffoli gates, and 500m2 +m2 log2 m measurement depth to factor an m-bit RSA modulo.

Accordingly, under current quantum computing, it is achievable to factor 16-bit RSA
modulo using 48 logical qubits, 1237 Toffoli gates and 129,024 measurement depth. Let
alone to factor 2048-bit RSA modulo, they project basic requirement of a mere 6,189
logical qubits, 2,624,225,018 Toffoli gates and 2,143,289,344 measurement depth. Six
thousand plus qubits sounds reachable in the foreseeable future. A two billion gate setup
will consume all a significant RnD fund available to a quantum computing research group.

According to [3], 2m + 3 qubits will be sufficient to factor m-bit RSA modulo. A
quantum arithmetic is constructed from Toffoli gates and quantum Fourier transform
(QFT) [23]. It consists of carry-based modular addition, multiplication, and exponentiation
circuits. Then [3] has introduced a circuit for Shor’s Algorithm using QFT via 2m + 3
qubits and O(m3 logm) elementary quantum gates in a depth of O(m3) to implement
the factorization algorithm. The circuit is computable in polynomial time on a classical
computer and is completely general as it does not rely on any property of the number to
be factored.

Quantum comparators and modular arithmetic are fundamental in a quantum algorithm.
[28] propose a quantum–classical comparator based on the QFT using operators upon
which only require up to one ancilla qubit. This achievement will cut down to 2m + 1
qubits sufficient to factor m-bit RSA modulo.

[24] has presented a quantum algorithm to factor products of prime numbers exploiting
a Grover search that uses only 2m−5 qubits and elementary quantum arithmetic operations.
Through large scale numerical simulations, Grover based factoring requires quadratically
fewer iteration steps than previous digital adiabatic algorithms.

[4] focuses on the optimization of the number of logical qubits in Shor’s quantum
factoring algorithm using a Residue Number System(RNS) requiring only m+ o(m) qubits
with gate count O(m3) and O(m2 log3 m) depth in the case of an m-bit RSA modulus.
Preliminary logical resource estimates suggest that this circuit could be engineered to
use less than 1700 qubits and Toffoli gates, and require 60 independent runs to factor an
RSA-2048 instance.

Latest estimate by Regev in 2024 [19]) on An Efficient Quantum Factoring Algorithm,
state that an m-bit integer can be factored by independently running a quantum circuit
with O(m3/2) gates in m1/2 + 4 running times. This analysis has lowered down the
celebrated Shor’s Algorithm which allows to factorize m-bit integers using a quantum
circuit of size (i.e., number of gates) O(m2).

[18] has recently further improved the quantum space efficiency of Regev’s algorithm
while keeping the circuit size the same. They managed to constructs a quantum factoring
circuit using O(m logm) qubits and O(m3/2 logm) gates. While Shor’s factoring algorithm
has always assumed that it operates on noiseless quantum device

Since a true error free qubit is sacred, a lot of effort has been focused on constructing
fewer qubits to factor an m-bit number. [27] has reported a universal quantum algorithm
for integer factorization by combining the classical lattice reduction with a quantum
approximate optimization algorithm (QAOA). The number of qubits required is O( m

log m ),
which is making it the most qubit-saving factorization algorithm to date. The authors
also demonstrate the algorithm experimentally by factoring integers up to 48 bits with
10 superconducting qubits. They project that a quantum circuit under current noisy
quantum computerswith 372 physical qubits and a depth of thousands might be able to
factor 2048-bit RSA.

Although quantum theory has existed for an entire century, there is still a quest on
how this extension on a probabilistic factoring algorithm affects crytographic computation.
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Specifically, identifying and demonstrating a factoring problem is uniquely solvable with
quantum technology remains an open concern. [8].

Nevertheless, most algorithms being used so far are based on searching a period of a
generator a modulo N . A simple algorithm can be designed to factor N . In general, a
period is as large as N itself. A new algorithm is called for here. There are few expensive
elements to avoid here.

i. Computing a large period.

ii. Computing power mode operation which is costly.

iii. Utilising a complex field which can be hardly tuned and improved upon.

Thus, an efficient implementations of Shor’s Algorithm has been progressively explored
in the last 3 decades to reduce the required number of qubits and/or gate counts.

2 RSA cryptosystem
R. L. Rivest, A. Shamir, and L. Adleman have invented a technique for public key
cryptography in 1977 [20], which came to be known as RSA cryptosystem.

A key generation process of RSA cryptosystem is given as follows;

1. Generate n-bits primes P and Q.

2. Compute the modulus N = P ·Q.

3. Set the public exponent e = 216 + 1.

4. Compute private exponent d = e−1 (mod (P − 1) · (Q− 1)).

5. Set Public key (e, N) and Private key (d,N).

RSA is the most popular PKI due to the following reasons;
1. It is the first PKI

2. It is written in a simple formula.

3. It follows few thousand years’ concept of prime numbers.

4. It is being written in cryptographic textbooks and taught in classes.

5. It is the standard to reckon with.
There are many difficult mathematical problem within RSA cryptosystem. Basic

mathematical problems listed as follows;

1. Integer Factorization problem. Given N , it is difficult to factor P and Q out of
N = PQ.

2. It is difficult to obtain a private key (d, N) from a public key (e, N).

3. It is difficult to compute ϕ(N) = (P − 1)(Q− 1).

4. The discrete log problem: For a selected plaintext m = Cd (mod N). It is difficult
to compute private exponent d.

5. The root problem: Given a ciphertext C = Me (mod N). It is difficult to compute
the plaintext m.

In fact, any computational process which leads to solving an integer factoring is
considered a difficult mathematical problem.
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3 Shor’s Algorithm
Peter Williston Shor from MIT has devised a quantum algorithm for factoring N which
will runs in polynomial time [22]. Given an RSA modulo N , the Shor’s Algorithm works
as follows:

1. Choose a number a, which is relatively prime to N .

2. Find the period of the function f(x) = ax (mod N). This effort reduces to finding
f(ϕ) ≡ 1 (mod N), where ϕ is a multiple of period of f(ϕ).

3. if f(ϕ) is even or aϕ/2 has an integer value, then proceed further. Otherwise, choose
another a.

4. Once the period ϕ is found, factors of N can be extracted from gcd(aϕ/2 ± 1, N).

All computations can be performed classically in polynomial time but finding the period
ϕ. For a small N , a period ϕ can be approximated by N − 2⌊

√
N⌋. Here comes a quantum

computer role in play. A quantum phase search will carried out by an inverse QFT. This
search allows for the period ϕ to be found in polynomial time.

Shor’s Algorithm relies heavily on modular arithmetic, quantum parallelism and QFT.
Theoretically, Shor’s Algorithm is claimed to be capable of factoring a large RSA modulo
N via a quantum computer in polynomial time.

4 An Overview on Classic Factoring Periods
Analogously, searching for a period within a ring modulo N has been a classic RSA modulo
factoring strategy during RSA early years for 2 decades prior to the year 2000.

Table 1.

Table 1: A periodic ring on RSA modulo factoring

Ring Curve Period
Power Modulo (P − 1)(Q− 1)
Lucas Sequences (P ± 1)(Q± 1)
Elliptic Curves (P + tP + 1)(Q+ tQ + 1)
Pell Curve Sequences (P ± 1)(P 2 + P + 1))ϵP (Q± 1)(Q2 +Q+ 1)ϵQ

Several rings with their possible periods have been listed in Table 1. Traditionally, an
attack focused on a hidden ring modulo a smaller prime P . First, the power mod function
f(x) = ax (mod N) is a classic starting point on factoring exercises which carry a period
ϕ = (P − 1)(Q − 1). Second, then come a popular Pollard’s rho algorithm [17] which
runs in O(

√
P ) proportional to a square root of the smaller prime P . Not long after a

period on the left P − 1 of a prime P was manifested and strongly attacked, an algorithm
to attack a new period on the right P+1 appeared [25] given by Lucas Sequences. These
traditional factoring algorithms have been heavily guarded by strong prime criteria.

In order to avoid having smaller smooth periods and maintain the strenght against
any attacks on both sides, criteria of strong primes were mandated. In 1985, an elliptic
curve has made its way into cryptography. A basic curve e : y2 = x3 + ax+ b (mod P )
is periodically varied at #E = P + tP + 1 where |tp| < 2

√
P . Lenstra introduced an

elliptic-curve factorization method (ECM) which gets around this strong prime obstacle
by considering a group of a random elliptic curve over the finite field ZP [16]. An ECM
algorithm had successfully managed to exploit a random smooth period. Since then strong
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prime criteria had been rendered obselete. Consequently, an RSA modulo bitsize has been
doubled and protected by its sheer size.

Recently, another periodic Pell sequence has been discovered which another period
P 2 + P + 1 besides P ± 1 [1]. This new additional period has not been fully explored on
any weakness though doubling its bitsize.

5 A Bloch Sphere

Figure 1: A qubit on a Bloch sphere in terms of polar coordinates.

Let a qubit |q⟩ = α|0⟩ + β|1⟩ =
[
α
β

]
= α

[
1
0

]
+ β

[
0
1

]
where α, β ∈ C are complex

numbers. Or alternatively as |q⟩ = cos θ
2 |0⟩ + eiϕ sin θ

2 |1⟩ Parameters θ and ϕ can be
interpreted as spherical co-ordinates with magnitude one. A single qubit state can be
plotted on the surface of a Bloch sphere as shown in Figure 1. For a given braket ⟨0⟩, ⟨0|
is bra and |0⟩ is ket.

6 Quantum Parallelism
Quantum parallelism refers to the ability of quantum computers to evaluate a function
for multiple input values simultaneously. This capability can be achieved by preparing a
quantum system in a superposition of input states, and applying a unitary transformation
that encodes a function to evaluate. The resulting state encodes the function’s output
values for all input values in the superposition, allowing for the computation of multiple
outputs simultaneously. This property is key to the speedup of many quantum algorithms.

Quantum algorithms that offer more than a polynomial speedup over the best-known
classical algorithm include Shor’s algorithm for factoring and the related quantum algo-
rithms for computing discrete logarithms and solving Pell’s equation. No mathematical
proof has been found that shows that an equally fast classical algorithm cannot be dis-
covered, although this is considered unlikely. Identifying cryptographic systems that may
be secure against quantum algorithms is an actively researched topic under the field of
post-quantum cryptography.

In 2021 at a quantum computing summit, IBM presented a 127-qubit microprocessor
named IBM Eagle. Since then IBM has steadily scaling up its general-purpose quantum
processor qubit size [5] as listed in Table 2.
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Table 2: An achievable growth of IBM quantum computers.

Year Name Qubits
2021 Eagle 127
2022 Osprey 433
2023 Condor 1121
2024 Flamingo 1386
2025 Kookaburra 4158

7 An Open Question
There is an algorithm Shor’s Algorithm which can factor N = PQ and there is supposedly
a growing quantum computer as shown in Table 2, why there is hardly a progress in
factoring an RSA modulo in terms of bit security levels via a quantum computer?

Let us review some historical achievement of Shor Algorithm. Since an advent of Shor
Algorithm, some people has only shown to factor small N = PQ which typically carry
1-bit security level only. The list of RSA modulo N are presented in Table 3.

Table 3: A popular list of small integer factoring via a quantum computer.

Year E R P A Q N
2012 2 4 7 8 11 77
2014 2 8 233 236 241 56153
2018 2 10 2017 2021 2027 4088459
2020 2 12 1048589 1048594 1048601 1099551473989

Let N = PQ. Take A = ⌊
√
N⌋ as a square root of N and R is the difference between

the two primes P and Q. Let an exponent e = P +Q−2A. As the cycle ϕ = (P −1)(Q−1),
then N + 1 − 2a = ϕ+ E. In general, it is intractable to solve discrete log problem on an
exponent E. Choose a small integer a and take aN+1−2A = aϕ+E ≡ aE (mod N).

As the bit size of N grows, primes P and Q can be chosen such that e remains small
to give an impression that a quantum computer can factor large RSA modulo N . These
exercises have misled its readers by giving a wrong impression such a large N can be
factored easily while in fact such an N can already be factored easily by a simple algorithm
using a current computer in an instance.

Beyond a quantum lecture on factoring 3·5 = 15, a simple factoring effort has successfully
factor 77 in 2012. Shor Algorithm concentrates on finding a cycle ϕ(N) = (P − 1)(Q− 1).
In fact, finding a cycle within a periodic ring modulo N will also lead to factoring N . Let
us take the first popular example. From [7], the largest number factored by a quantum
computer is 56153 = 241 · 233. or

(N + 1) − 2A = (P − 1)(Q− 1) + e = 56154 − 2 · 236 = 55682

which gives e = 2. Next by [6], the largest number factored by a quantum computer is
4088459 = 2017 · 2027. Since A = 2021,

N + 1 − 2 · a = 4084418.

But (P − 1)(Q− 1) = 4084416.
Lastly, in 2019 the largest number factored by [15] is 1099551473989 = 1048589 ·1048601

which appears to be large. Nevertheless, a = 1048594 and (N+1)−2a = 1099549376802.But
(P − 1)(Q− 1) = 10995512642800. Therefore e = 2 only. From Table 3, a prime difference
R = Q− P is incrementing but E = 2 stay the same carrying security level 1-bit only.
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8 A Typical RSA modulo
Practically, the Shor Algorithm need to retrieve the true period with very high probability
under error control environment. An experimental exercise should be conducted on a
steady growth of RSA modulo and its basic security level. Let us take the first prime P as
the next prime of n-bit number from constant e minus 2 and the second prime Q as the
next prime of n-bit number from π2minus9. The list prime samples and their product are
listed in Table 4 below. An exponent e = P +Q− 2⌊

√
2⌋ is also given for each N . The

bit size nE is considered a basic security level of respective RSA modulo N . It should be
observed that initially e grows gradually. Traditional primes P and Q are closer to each
other and E is just several bit smaller.

For that purposes, we have explore the implementation and performance of Shor’s
algorithm using Qiskit’s quantum package on IBM Quantum hardware. IBM Quantum
hardware refers to the physical quantum computing devices developed and maintained by
IBM. These devices leverage the principles of quantum mechanics to perform computations
that would be challenging or impossible for classical computers. IBM Quantum hardware
is part of IBM’s broader quantum computing initiative, which includes both hardware and
software to advance the field of quantum computing.

Table 4: An increasing pseudo random RSA modulo.

n P Q ⌊
√
N⌋ N E nE time(s)

4 13 17 14 221 2 1 0.0
6 47 59 52 2773 2 1 0.0
8 191 223 206 42593 2 1 0.0
10 739 907 818 670273 10 4 0.0
12 2953 3571 3247 10545163 30 5 0.0
14 11777 14249 12954 167810473 118 7 0.0
16 47087 56993 51803 2683629391 474 9 0.01
18 188299 227977 207190 42927841123 1896 11 0.02
20 753187 911851 828730 686794319137 7578 13 0.10
22 3012719 3647393 3314901 10988570191567 30310 15 0.14
24 12050777 14589559 13259544 175815522037343 121248 17 0.54
26 48203081 58358173 53038134 2813043740131013 484986 19 2.18
28 192812311 233432701 212152536 45008698542782011 1939940 21 8.81
30 771249257 933730619 848610067 720139046141900083 7759742 23 34.03
32 3084996979 3734922479 3394440243 11522224564514190941 31038972 25 352.51

Let us take the case N = 8 where (P,Q,N) = (191, 223, 42593) and go through a basic
Shor’s Algorithm. A median A = ⌊

√
N⌋ = 206. First, choose a small generator a where

1 < a < A and gcd(a,N) = 1. Take a = 3 and Shor’s Algorithm is supposedly able to
approximate a period r such that ar ≡ 1 (mod N).

Once r = (P −1)(Q−1)
2 = 21090 is reached, then gcd(a r

2 − 1, N) and gcd(a r
2 + 1, N) can

be computed which have a good chance of containing P and Q. In this case, a r
2 = 2675.

Then a r
2 − 1 = 2674 = 2 · 7 · 191 and a r

2 + 1 = 2676 = 22 · 3 · 223. Consequently, factors P
and Q of N can be numerically extracted.

9 Quantum Fourier Transform (QFT)
Shor’s Algorithm focuses on a power modulo periodic functions. This periodic search has
been proclaimed to produce a real-time quantum solution for factoring 2n-bit RSA modulo
with time complexity O(n3).
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There is a simple rule for measurement. To find the probability of measuring a state
|y⟩ in the qubit |x⟩, compute a probability;

P (|x⟩) = |⟨x|y⟩|2.

The symbols ⟨ and | tell us ⟨x| is a row vector and the symbols | and ⟩ tell us |y⟩ is a
column vector. In quantum mechanics, column and row vectors are referred to as a ket
and the bra respectively. Together they make up a bra-ket notation. Any ket |a⟩ has a
corresponding bra ⟨a| via its conjugate transpose.

Similarly, a quantum Fourier transform is an analogue of a discrete Fourier transform
and acts on a quantum state vector |x⟩ =

∑N−1
j=0 xj |j⟩ and maps it to the quantum state

vector,

|y⟩ =
N−1∑

k=0
yk|k⟩

via a formula,

yk = 1√
N

N−1∑

j=0
xjw

jk
N

where wjk
N = e2πi jk

N .
A QFT can be performed efficiently on a quantum computer with a decomposition into

the product of simpler unitary matrices. This transform can also be expressed as the map:

|j⟩ :→ 1√
N

N−1∑

j=0
wjk

N |k⟩

And in terms of the unitary matrix:

UQFT = 1√
N

N−1∑

j=0

N−1∑

k=0
wjk

N |k⟩⟨j|

Let us derive a QFT acting on an m-qubit. Let a state |x⟩ = |xm−1 · · ·x1x0⟩ written in
little endian and wxy

N = e2πi xy
N ;

UQFT|x⟩ = 1√
N

N−1∑

y=0
wxy

N |y⟩ = 1√
N

N−1∑

y=0
e2πi xy

N |y⟩

= 1√
N

N−1∑

y=0
e

(2πix
∑m−1

k=0
yk
2k )|ym−1 · · · y1y0⟩ = 1√

N

N−1∑

y=0

m−1∏

k=0
e2πix

yk
2k |ym−1 · · · y1y0⟩

= 1√
N

m−1⊗

k=0
(|0⟩ + e2πi x

2k |1⟩)

= 1√
N

⊗ (|0⟩ + e2πi x

2m−1 |1⟩) ⊗ · · · ⊗ (|0⟩ + e2πi x

2i |1⟩) ⊗ (|0⟩ + e2πi x
20 |1⟩).

In a classical computer, at any instances, an input x = xm−1 · · ·x1x0 can be efficiently
transformed via a fast fourier transform into an output y = ym−1 · · · y1y0. In a quantum
computing, a state |x⟩ = |xm−1 · · ·x1x0⟩ can also be presumably transformed into a
quantum state |y⟩ = |ym−1 · · · y1y0⟩.

The best QFT algorithm known (as of late 2000) require only O(n logn) gates to
achieve an efficient approximation [14]. For correctness, let us take a look at a compact
circuit for a 3-qubit QFT in Figure 3 as follows:
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Figure 2: A raw 3-qubit quantum circuit on Quantum Fourier Transform.

S and T gates are phase and π/8 gates. A matrix of QFT may be written explicitly as

1√
8




1 1 1 1 1 1 1 1
1 w w2 w3 w4 w5 w6 w7

1 w2 w4 w6 1 w2 w4 w6

1 w3 w6 w w4 w7 w2 w5

1 w4 1 w4 1 w4 1 w4

1 w5 w2 w7 w4 w w6 w3

1 w6 w4 w2 1 w6 w4 w2

1 w7 w6 w5 w4 w3 w2 w




where w is an 8th primitive root of unity. A 3-qubit QFT here is infact an 8 qubit
state vector.

QFT is a quantum implementation of the discrete Fourier transform. Let us carry out
QFT algorithm to transform M qubit state vector;

|α⟩ = α0|0⟩ + α1|1⟩ + · · · + αM |M⟩
to its Fourier transform

|β⟩ = β0|0⟩ + β1|1⟩ + · · · + βM |M⟩.
A measurement on |β⟩ will be referred to as a quantum Fourier sampling. Let w be an

M -th primitive root of unity, w = e2π/M . Then, discrete QFT is defined by

QFTM = 1√
M




1 1 1 1 1 1 1 1
1 w w2 w3 w4 w5 wM−2 wM−1

1 w2 w4 w6 w8 w10 w2(M−2) w2(M−1)

1 w3 w6 w9 w12 w15 w3(M−2) w3(M−1)

1 w4 w8 w12 w16 w20 w4(M−2) w4(M−1)

...
...

...
...

... . . . ...
...

1 wM−2 w(M−2)2 w(M−2)3 w(M−2)4 · · · w(M−2)(M−2) w(M−2)(M−1)

1 wM−1 w(M−1)2 w(M−1)3 w(M−1)4 · · · w(M−1)(M−2) w(M−1)(M−1)




While a promise of quantum physical optimizers with having more than 1000 qubits
offers interesting perspectives, the tests carried out in many fields do not yet produce any
consequential results about quantum factoring supremacy [10]. In quantum computation,
an m-qubit QFT is defined as a 2m-point DFT on a quantum superposition of the signal
of length 2m. A quantum convolution is conjectured to be physically impossible [12]. First
practical question here, does QFTM can be internally computed at an instance all the
time in an instance following the sheer size of M? M will carry the same size of N .

Second practical question here, can a quantum computer take a superposition of
Hadamard gate Unitary gate H⊗m internally computed at an instance following the sheer
size of M? M must carry the same size of N .
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Figure 3: A raw quantum circuit on QFT Shor’s Algorithm will come down to a period
finding problem.

10 Power Modulo Function
A bulk of an execution time is spent on performing a modular exponentiation. Let start
from a state x and transform it into state xa (mod N).

Ua,N |x⟩ = |xa (mod N)⟩.

Applying this gate one at a time,

U0
a,N |x⟩ = |1 (mod N)⟩

U1
a,N |x⟩ = |a (mod N)⟩

U2
a,N |x⟩ = |a2 (mod N)⟩

U3
a,N |x⟩ = |a3 (mod N)⟩

...
Ur

a,N |x⟩ = |ar (mod N)⟩.

a power modular operation will be called as many time as needed.
Start with a register of m = 2N qubits and initialize them all in the zero state |0⟩. We

still need to prepare the register into a uniform superposition by applying Hardamard H
gate to each qubit in the register

|ψ⟩ = 1√
M

M−1∑

x=0
|x⟩

Since we cannot afford to build an m-qubit quantum circuit, we can make a m-qubit
query at a time where m << m. However, m must be larger than

√
M in order to gain
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a constant probability of success. The lower bound
√
M on a quantum search has been

proven prior to the discovery of Grover’s Algorithm.
A raw quantum circuit to compute this power modulo operation is depicted in Figure

2. Third practical question here, does Unitary gate Ua,N can be internally computed at
an instance all the time in an instance to period r following the sheer size of r? A period
r will carry about the same size of N .

Figure 4: A truncated periodic signal on a power mod function.

11 A Period Finding Problem
Let f : {0, 1, 2, . . . ,m− 1} → S such that f(x) = f(x+ r) for all x. The challenge here is
to find a period r. We need to find a period r such that if f(x) = ax (mod N), then a
collision is the case f(x) = f(x+ r). As depicted in Figure 3, there are hardly practical to
assign M qubits on the left and measure M qubit on the right.

Figure 4 depicted a power mod function on 3x (mod 42593) periodic at r = (P −1)(Q−1)
2 =

21090. Theoretically, a quantum computer can easily find a small period r via QFT. With-
out a period r, we can estimate it to be smaller than N+1−2A

2 where N + 1 − 2a =
(P − 1)(Q− 1) + E which is still a 2n-bit number or several bit smaller.

In order to search for a period r, we need to locate a collision that suffices to check on√
M =

√
N+1−2A

2 of n-bit cases. Searching for a collision has been identified as Birthday
Paradox. In summary, there are 365 days per year. We need to randomly check on√

365 ∼= 19.105 persons to gain a probability above 1
2 .

While r is at most (2n− 1)-bit number, how many instances we need to check on in
order to gain a collision with a constant probability of success. The answer is

√
r which is

an n-bit number. There is another equivalent unsorted search algorithm, namely, Grover’s
Algorithm which must run in O(

√
M) which already reaches the lower search via quantum

computers.

12 Grover Theorem
In 1996, Lov Kumar Grover proposed a quantum algorithm to find a given element in
an unstructured of m elements in O(

√
M) queries compared to O(M) required classically

[13]. Grover’s algorithm could theoretically brute-force current 128-bit symmetric AES
cryptographic key in 264 iterations.

Given an unstructured function f ,

f : {0, 1, 2, . . . ,M − 1} → {0, 1},
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Figure 5: A wide window on an extended periodic signal on a power mod function

Any searching quantum algorithm will take at least
√
M steps.

A proof of this Theorem 1 is beyond the scope of this paper. Suppose there are M
possible indices to locate f(x) = ax ≡ 1 (mod N) items for the search problem and they
are indexed by assigning each item an integer 0, 1, 2, . . . ,M − 1. Assuming a power mod
function f is nor structured,

√
M measures are required to gain a successful search. Fourth

practical question here, does Shor’s Algorithm breach the lower bound on quantum search.
One can argue here classically the function f is practically unstructured on domain set

M
log M .

13 Quantum Period Finding via Quantum Phase Estimation
Let us extend a domain window to the right up to N2 as shown in Figure 5. This idea
appears to be useful in capturing several periodic indices. The real problem here to get
anywhere near a period. Extending to a wider window will hardly increase a chance to
capture 2 periodic points.

Suppose f is periodic with period r, Then a QFT of f , namely, f̂ is periodic with
period M

r . Currently, the Shor Algorithm can be easily employed to factor 32-bit strong
RSA modulo by error-free quantum computing simulation. Take P and Q as n = 16-bit
primes. N = PQ is 32-bit integer. In order to quantum registers of this case, we need a
232 vector to form about 4 billion registers. Then we need to do QFT on these billions of
registers. Here, we start to enter a huge memory issue.

In order to be practical, a number of qubits must be limited the number of classic com-
puting bits. Let initialize m qubits as |qm−1 . . . q2q1q0⟩ = |0···000⟩ and |λm−2 . . . λ2λ1λ0⟩ =
|0···001⟩. Take m as the bitsize of N , in this paper, m = 2N . Traditionally, a target period
is slightly smaller than N , the second set of qubit register is set as m− 2 = 2N − 2. In
this setting, [9] argues that theoretically a probability of success in getting a true periodic
phase is approximately one.

14 Current Status on Shor’s Algorithm
Next year, there will be 2 possibles cases on an m-bit RSA modulo. Take a sample
RSA1024 from RSA challenge numbers. A critical quest here is ‘Can a quantum computer
practically break RSA1024 modulo next year?’

Case 1: By looking at the growth of IBM quantum computers in Table 2, there will
be sufficient number of qubits, specifically 2(1024) + 6 qubits to break RSA1024. These
quantum machine are presumably succumb to a minimum acceptable error.
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Figure 6: Quantum order finding via a phase estimation

Case 2: There will be (2m+ 6)-qubit quantum computers with a minimum acceptable
error. However, Shor Algorithm is still hardly practically viable to factor a 128-bit RSA
modulo.

This paper will argue that the latter case is favourable. Hence, there is a need to
have another algorithm to practically factor via a quantum computer. This position will
certainly contradict a common belief on Shor Algorithm specifically by [9] on the success
probability of quantum order finding.

Moreover, given a quantum computer in few thousand qubits as listed in Table 2,
RSA1024 should be factorable by next year. The first hurdle is to overcome factoring an
RSA modulo which carry security bit higher than 64 bits following a typical growth in
Table 4.

Currently, there are 4 major practical hurdles to execute a factoring Shor Algorithm
via a phase estimation at 4 various locations in Figure 5.

1) A parallel definition of a sequence of m-qubits must be initially or internally declared.
This declaration will take up a superposition at 2m spaces.

2) Unitary gate Ua,N must be able to internally compute a power modulo operation in
an instance. A power modulo operation has been replaced internally into multiply
modulo operation one at a time.

3) Shor Algorithm implicitly calls for a QFT or QFT inverse algorithm to be computed
in superposition using 2m logical qubits.

4) A composition of the above 2 functions are extremely heavy in a superposition. Prac-
tically, a measurement must be finally made on an exponential internal composition.

At the same time, a quantum computer would manage to accurately estimate a period
of power modulo function faster than O(

√
N) as stipulated in Grover Theorem.

15 A Special Case
A special attention should be given on an effort using the smallest number of qubit need
to factor. (Yan and et. al, 2022) proposed a universal quantum algorithm for integer
factorization that requires only sublinear quantum resources. The algorithm is based on
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the classical Schnorr’s algorithm [21] which uses lattice reduction to factor an RSA modulo
N. For an m-bit integer N , the number of qubits needed for their algorithm is O( m

log m )
which is sublinear in the bit length of N . The authors reported that they have successfully
factorized RSA modulo 1961, 48567227 and 261980999226229 using 3, 5 and 10 qubits
in a superconducting quantum processor, respectively. An easy estimate would be 372
physical qubits is sufficient to factor an RSA-2048. Nevertheless, the number of gates is
hardly projected in terms thousands if not billions.

Table 5: A list of small integer factoring via a quantum computer by sublinear qubits.

n P Q A N E nE

6 37 53 44 1961 2 2
13 6133 7919 6969 48567227 114 7
24 15538213 16860433 16185827 261980999226229 26992 15

The RSA modulos being used here are well chosen in an increasing security nE bits as
shown in Table 5. This experimental result did not go beyond 15-bit security level. Might
it be due to their simulation constraint or practical quantum constraint?

16 Critical Discussion
Currently, a quantum state qubit is operating on a minute error. Taking a larger sequence
of m-qubits will accumulate the total error which is still under serious research. Running
Shor’s algorithm on a current fault-tolerant quantum computer is quite resource intensive
to manage.

Are we going to see a quantum machine to factor 896 to 1024-bit RSA modulo next
year 2025? Or the Shor algorithm is still crawling at factoring from 32 to 64-bit RSA
modulo with 31 and 63-bit security levels respectively. A super computer can simulate
this experiment. An Osprey IBM machine should do the job. However, the next challenge
is on 128-bit RSA modulo which a supercomputer will reach its limit to simulate. Chances
are everyone will blame it on quantum errors.

A number field sieve is an improvement to a quadratic sieve. A variation of quadratice
sieve is the most efficient factoring algorithm in this arena. Using such an algorithm to
factor a large number N , a running time of the number field sieve is super-polynomial.
Chances are a superposition will give an advantage in searching for a candidate x such
that x2 ≡ b (mod N) for some small integer b.

17 Conclusion
After 3 decades of its inception, Shor’s Algorithm is still crawling at its infant stage.
By now any factoring enthusiasts would have realized that the Shor algorithm will not
practically perform better than classic periodic factoring algorithms. A practical analysis
on this its development suggest that an exponential number of logical qubits is needed
to push through Shor’s Algorithm in practice. It has already reached the lower bound
and exhausted its quantum super position prowess. Perhaps, a new algorithm is called for
which can harness a quantum superposition advantages in a quadratic form.
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Abstract. The Post-Quantum Cryptography McEliece-Chen (PQCMC) scheme,
designed to withstand quantum computational threats, is critically examined in
this paper. Our analysis unveils a significant flaw within the scheme, where an
end entity (EE) can potentially derive the Certificate Authority’s (CA) private
signing key, thereby compromising the system’s integrity and authenticity. This
vulnerability stems from the scheme’s reliance on invertible matrices and the processes
surrounding them, which we demonstrate could lead to the unauthorized creation of
valid certificates. Such a breach not only questions the robustness of PQCMC against
conventional attacks but also its adequacy for post-quantum security in practice.
Our findings emphasize the urgent need for rigorous, dynamic security evaluations in
developing cryptographic protocols, ensuring they are secure against both quantum
and sophisticated conventional threats.
Keywords: Post-Quantum Cryptography · McEliece Cryptography · Cryptographic
Vulnerabilities · Implicit Certificates

1 Introduction
Public Key Infrastructure (PKI) [1, 34, 23] plays a crucial role in securing digital communi-
cations by providing mechanisms for secure key exchange, authentication, and encryption.
Central to PKI are digital certificates [18, 24], which associate public keys with entities,
enabling verification of the entities’ credentials. There are generally two types of certificates:
explicit [8, 12], which contain signatures from a Certificate Authority (CA), and implicit,
which do not require such signatures but use other methods for entity authentication.

Implicit certificates [9, 6] differ fundamentally from their explicit counterparts by
minimizing the role of the CA in the certification process. While explicit certificates
involve the CA directly signing the certificate to attest to the authenticity of the public
key, implicit certificates use a clever combination of key agreement protocols [5, 16] and
partial key escrow [4, 3] to authenticate the public key. In this model, the CA contributes
part of the public key as a commitment during certificate issuance, which allows the
certificate holder to derive the complete public key in a manner that can be independently
verified by third parties without direct CA involvement. This approach not only reduces
the computational load and complexity associated with CA operations but also enhances
privacy and scalability by decreasing the CA’s visibility into the subsequent use of the
certificate.

The strength of implicit certificates lies in their streamlined process and reduced reliance
on CA resources, making them particularly suitable for environments where computational
resources are scarce or the risk of CA compromise is non-negligible. These certificates
are especially advantageous in distributed systems [10, 31], Internet of Things (IoT)
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environments [25, 30], and mobile applications [26], where the overhead associated with
traditional certificate verification can be prohibitively expensive or technically challenging.

However, the advent of quantum computing [28, 15, 17] poses significant threats to
contemporary cryptographic systems, including those underlying PKI. Quantum computers
can efficiently solve problems such as integer factorization and discrete logarithms, which
underpin many of today’s cryptographic protocols, including RSA and Elliptic Curve
Cryptography (ECC). This capability, derived primarily from algorithms like Shor’s [27, 33],
has spurred global initiatives to develop cryptographic systems resilient to both classical
and quantum threats.

Among these initiatives is the Post-Quantum Cryptography (PQC) standardization [21]
effort led by the National Institute of Standards and Technology (NIST). This effort aims
to evaluate and standardize cryptographic algorithms that can ensure security in the era of
quantum computing. While NIST’s work primarily focuses on a broadly applicable suite of
algorithms, including public-key encryption and digital signatures, it does not specifically
cater to the unique requirements of certificate issuance, particularly implicit certificates.

In response to this gap, the Post-Quantum Cryptography McEliece-Chen (PQCMC)
implicit certificate scheme [11] was developed. This scheme claims to be a robust candidate
for PQC, leveraging the McEliece cryptography system [14, 29, 2], known for its resistance
to quantum attacks due to the NP-hard problem of decoding linear codes [7, 19]. Despite
its potential, our investigation reveals significant vulnerabilities within the PQCMC scheme
that could allow an end entity (EE) to undermine the integrity of the certificate issuance
process, enabling the unauthorized creation of certificates. This discovery raises serious
concerns about the use of PQCMC in secure communications [20, 32, 22], particularly in
scenarios where trust and authentication are paramount.

The objective of this paper is to detail our discovery of this critical flaw in the PQCMC
scheme, which allows an EE to derive the CA’s private signing key through algebraic
manipulation of available information provided to the EE. We provide a demonstration of
how this vulnerability can be exploited, enabling unauthorized certificate creation. Our
analysis discusses the implications of this flaw for the security of digital communications and
contributes to the ongoing development of secure post-quantum cryptographic protocols.

1.1 Organization

This rest of this paper is structured as follows: Section 2 discusses the foundational aspects
of McEliece Cryptography. Section 3 details the PQCMC scheme, including its design
and security properties. Section 4 analyzes a significant vulnerability within the PQCMC
scheme, detailing the technical mechanism of the flaw, providing a conceptual illustration,
and discussing its implications. Section 5 concludes the paper, summarizing our findings
and their implications for post-quantum cryptography.

2 Preliminaries
This section provides the necessary background on McEliece cryptography, which forms
the basis of the PQCMC scheme. Developed by Robert McEliece in 1978, the McEliece
cryptography system is a prominent code-based cryptographic scheme. It is notable for its
reliance on the NP-hard problem of decoding a general linear code. The system, originally
employing Goppa codes, offers efficient encoding and decoding processes while maintaining
robust security against known attacks. These characteristics make it particularly resistant
to quantum computing threats, a key reason for its use in post-quantum cryptographic
schemes like PQCMC [11].
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2.1 McEliece Encryption Scheme
The McEliece system operates using a comprehensive set of keys, each playing a critical
role in the encryption and decryption processes. These elements of keys are outlined in
Table 1.

Table 1: Elements of Keys in McEliece Cryptography.

Key Description Dimensions Feature
K1 Scrambler Matrix ζ1 × ζ1 Invertible
K2 Generator Matrix ζ1 × ζ2 K2K4 = I
K3 Permutation Matrix ζ2 × ζ2 Invertible
K4 Decoder Matrix ζ2 × ζ1 K4K2 = I
K5 Error-Detector Matrix Varied dimensions Clears error

The public key, denoted as L, is derived from the product of K1, K2, and K3, form-
ing L = K1K2K3. The secret key comprises the set SK = {K1, K2, K3}, where each
component is essential for the decryption process. Notably, K4 and K5 are generated
based on K2, playing critical roles in decoding and error correction, respectively. These
keys facilitate the encryption and decryption operations, which are further detailed in
Algorithms 1 and 2. To better integrate with the PQCMC scheme, the algorithms as well
as notations here are mostly repeated with the ones introduced by Chen [11] with minor
modifications.

Algorithm 1 Encryption Algorithm z = Enc(m, L)
Require: Plaintext m of dimension 1× ζ1, Public Key L of ζ1 × ζ2
Ensure: Ciphertext z of 1× ζ2

1: Generate random error vector e of dimension 1× ζ2
2: z←mL + e ▷ Ciphertext is the encoded message plus error
3: return z

An error-correcting function f(α, K5) is used in the decryption process to detect and
correct errors introduced by the vector e. The function f ensures that the received message
z′, once error-corrected, yields m′, which represents the plaintext post-encoded with K1K2.
This error correction is critical to recovering the original message from its encrypted form.

Algorithm 2 Decryption Algorithm m = Dec(z, SK)
Require: Ciphertext z of dimension 1× ζ2, Secret Key SK
Ensure: Plaintext m of dimension 1× ζ1

1: Decompose SK and compute to obtain K−1
1 , K4, K5, K−1

3 where the dimensions are
listed in table 1

2: z′ ← zK−1
3 ▷ Remove permutation layer

3: m′ ← f(z′, K5) ▷ Apply error correction to retrieve encoded message
4: m←m′K4K−1

1 ▷ Decode and remove scrambler
5: return m

2.2 McEliece-based Digital Signatures in PQCMC
McEliece can also be adapted for digital signatures. The signing and verification process
leveraging McEliece cryptography is described in Algorithms 3 and 4. It’s important to
note that this signing mechanism is specific to the PQCMC scheme [11] and differs from
the well-recognized general McEliece-based signature scheme proposed by Courtois et
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al. [13]. We believe this specificity contributes to the vulnerability discussed later in this
paper.

Algorithm 3 Signing Algorithm s = Sign(m, SK)
Require: Message m of dimension 1× ζ1, Secret Key SK
Ensure: Signature s of dimension 1× ζ2

1: Decompose SK and compute to obtain K−1
1 , K4, K−1

3 where the dimensions are listed
in table 1

2: sT ← K−1
3 K4K−1

1 mT ▷ Encode message m using secret key components
3: return s

Algorithm 4 Verification Algorithm m = V er(s, L)
Require: Signature s of dimension 1× ζ2, Public Key L of ζ1 × ζ2
Ensure: Original message m of 1× ζ1

1: mT ← LsT ▷ Decode the signature s using the public key L to recover message m
2: return m

In the signing and verification processes (Algorithms 3 and 4), the identity matrix
I is leveraged that K−1

3 K4K−1
1 L = I. This identity is pivotal as it demonstrates that

the operations involved in the signing algorithm effectively prepare a message m in a
way that, when processed through the verification algorithm using the public key L, will
return the original message m. This ensures that the signature s, when decoded by L,
accurately reconstructs the signed message, affirming the signature’s validity. Consequently,
SKs = K−1

3 K4K−1
1 is defined as the transformation component of the secret key used in

the signing process.

3 Post-Quantum Cryptography McEliece-Chen Scheme
Overview

This section delves into the specifics of the PQCMC implicit certificate scheme [11],
offering a detailed explanation of its workings and the security properties it aims to achieve.
By understanding the mechanics and intended features of the PQCMC, we can better
appreciate the significance of the vulnerability uncovered and its implications.

3.1 Generation of Random Invertible Matrices
The PQCMC scheme introduces a novel method for generating random invertible matrices.
This method ensures the creation of Mr and Mh, based respectively on the random number
r and the hash value h in the protocol. Here, we briefly describe this innovative matrix
generation method and its application within the PQCMC scheme:

• Seed Initialization: Both matrices are generated by seeding a pseudorandom
number generator with r for Mr and h for Mh. This seed ensures that each matrix
is unique and securely tied to its originating data.

• Matrix Filling and Verification: The matrices are filled using the outputs from
the pseudorandom number generator. The generation process includes checks to
ensure that each matrix is invertible—a critical requirement for the matrices to
function correctly within the cryptographic operations of PQCMC.



68 Exposing Vulnerabilities in a Post-Quantum Implicit Certificate Scheme

• Algorithmic Efficiency: The method is designed to be computationally efficient,
enabling the quick generation of invertible matrices even in resource-constrained
environments, which is vital for maintaining the overall efficiency of the certificate
issuance process.

Notably, this matrix generation method, denoted as MGM(·), generates two matrices
simultaneously. From a given random number r, it produces (Mr, M−1

r ) ← MGM(r),
where MrM−1

r = I. This method enhances both the security and efficiency of the PQCMC
scheme, marking a significant advancement in cryptographic practices, particularly in
preparing for the challenges posed by quantum computing.

3.2 Detailed Description
The PQCMC scheme leverages McEliece cryptography and the ECQV framework, aiming
to securely issue implicit certificates in environments vulnerable to quantum attacks. The
interaction between the EE and the CA is outlined in Figure 1 and involves several critical
steps and components:

EE CA

Generates {K1,(E), K2,(E), K3,(E)}
Generates K4,(E) based on K2,(E)

SKS,(E) ← K−1
3,(E)K4,(E)K

−1
1,(E)

L(E) ← K1,(E)K2,(E)K3,(E) L(E),E−−−−→ Generates r and Mr

T ← SKS,(CA)Mr

B ← TL(E)

CE ← Encode(B, E)r,CE←−−−B, E ← Decode(CE)
T ← BSKS,(E)

h← H(H(CE)||H(CCA))
Generates Mr, Mh from r, h

q ← {MhL(CA)TK1,(E), K2,(E), K3,(E)}
Q←MhL(CA)B

Note: In this diagram, E represents identity information for EE.

Figure 1: Interaction between EE and CA in the PQCMC Process

1. Key Generation:

• EE: Generates a set of matrices that constitute the secret key, the public key,
as well as the signing secret key.

• CA: Independently generates a random number r and a corresponding invertible
matrix Mr, which are used in the certificate generation process.

2. Certificate Generation:

• The CA computes T using the EE’s public key and its own secret key component:
T = SKS,(E)Mr.

• The reconstruction value B is then computed as B = TL(E).
• The implicit certificate CE is encoded from B and identity information E

provided by the EE.
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3. Transmission and Verification:

• The CA sends CE and the random number r back to the EE.
• Other entities can use the certificate to verify EE’s public key by first computing

h = H(H(CE)∥H(CCA)), where CCA is the CA’s certificate. One can then
reconstruct the EE’s public key Q as Q = MhL(CA)B, where the invertible
matrix Mh is based on h.

4. Private and Public Key Updates:

• Upon receiving CE and r, the EE calculates h = H(H(CE)∥H(CCA)).
• The EE updates its secret key q as q = {MhL(CA)TK1,(E), K2,(E), K3,(E)} and

the public key Q as Q = MhL(CA)B.

This method enables issuance of certificates without requiring the traditional CA
signature, instead using cryptographic transformations to ensure authenticity and integrity.

3.3 Intended Security Properties
The PQCMC scheme is designed with several key security properties in mind, aiming to
address both conventional and quantum cryptographic threats:

1. Quantum Resistance: PQCMC leverages the McEliece cryptography framework,
renowned for its resistance to quantum attacks. Unlike cryptosystems based on
factorization or discrete logarithms, which are vulnerable to quantum algorithms like
Shor’s algorithm, McEliece is based on the hard problem of decoding random linear
codes, which currently offers no efficient quantum algorithm for its compromise.

2. Integrity and Authenticity: The integrity of certificates within the PQCMC
framework is maintained through the cryptographic binding of certificate data with
the CA’s secret operations. Only the CA, with access to its private cryptographic
components (like secret keys and random matrices), can generate valid certificates.
Any unauthorized modification to a certificate disrupts the delicate cryptographic
structure, making it impossible to reconstruct the correct public key using the CA’s
public components.

3. Efficiency: By utilizing implicit certificates, the PQCMC scheme significantly
reduces the computational load associated with traditional signature verification
processes. This approach is particularly advantageous in constrained environments,
enhancing the system’s scalability and responsiveness by minimizing the computa-
tional steps required for verifying certificate authenticity.

4. Non-repudiation: Despite the certificates being implicit, the PQCMC design
ensures non-repudiation through cryptographic traces that irrevocably link the
certificate to its issuer (the CA) and the recipient (the EE). Once a certificate
is issued, neither the issuer can deny its issuance nor can the recipient deny its
receipt. This is achieved through the unique cryptographic linkage between the
issued certificate’s data and the involved parties’ keys.

These properties collectively aim to fortify the PQCMC scheme against emerging
threats and position it as a viable solution for securing communications in the impending
post-quantum era. The subsequent sections delve into the specific vulnerabilities discov-
ered within this framework, presenting a critical examination of its robustness and the
implications of these security flaws.
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4 Security Analysis
The security analysis reveals a critical vulnerability within the PQCMC scheme: the
inadvertent leakage of the CA’s private signing key. This flaw allows an EE to derive
and potentially misuse the CA’s signing key, undermining the scheme’s integrity and
authenticity.

4.1 Technical Mechanism of the vulnerability
The vulnerability exploits the transmission of certain elements and their algebraic properties
within the PQCMC protocol. Specifically:

1. The CA transmits a random number r to the EE, from which the invertible matrix
Mr and its inverse M−1

r are deterministically derived.

2. The CA then multiplies its private signing key by Mr to create T , which is sent to
the EE as part of the certificate generation process.

3. Given T and Mr, the EE can algebraically manipulate these elements to retrieve
SKs,(CA) by calculating T×M−1

r . This calculation effectively cancels out Mr, leaving
the CA’s private signing key exposed.

4.2 Conceptual Illustration of the Vulnerability
To better understand the vulnerability, consider the following conceptual representation:

CA EE
Transmits T and r

Computes (Mr, M−1
r )← MGM(r)

Calculates T ×M−1
r

Retrieves SKs,(CA)

EE uses the retrieved key to forge certificates

Figure 2: Diagrammatic representation of the vulnerability exploitation process in the
PQCMC scheme.

As shown in Figure 2, the vulnerability stems from the EE’s ability to:

1. Receives T and r from the CA.

2. Retrieves Mr along with M−1
r using the received r through the function MGM(·)

mentioned in Section 3.

3. Retrieves CA’s private signing key by calculating SKs,(CA) = T ×M−1
r .
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4.3 Impact Assessment
The ability of an EE to derive the CA’s private signing key fundamentally compromises
the cryptographic assurances of authenticity and integrity. This vulnerability permits
unauthorized certificate forgery, thus potentially enabling impersonation or unauthorized
access to secure systems. A summary of the security implications is presented in Table 2.

Table 2: Summary of Security Implications of the PQCMC Vulnerability

Impact Description
Authenticity Forged certificates cannot be distinguished from legit-

imate ones, enabling impersonation and unauthorized
access.

Integrity Integrity of the cryptographic system is compromised,
allowing data manipulation and mistrust in transmit-
ted information.

Non-repudiation The ability to deny transactions facilitated by forged
certificates could complicate legal and audit processes.

The implications of the PQCMC vulnerability extend beyond mere technical failures,
impacting strategic and operational facets of entities employing this scheme. The urgency
for corrective measures and a revised approach to cryptographic design and validation is
evident and necessary to mitigate these risks.

5 Conclusion
The investigation into the PQCMC scheme has uncovered a significant vulnerability that
undermines its security integrity. Our analysis revealed that an EE can potentially derive
the CA’s private signing key, compromising authenticity and integrity in the system. This
vulnerability stems from PQCMC’s use of invertible matrices and the transmission of the
random number used to generate them. Importantly, the root cause is that PQCMC’s
signing mechanism is essentially a reversed McEliece encryption scheme. Such direct
adaptation of encryption for signing is often problematic in cryptography, as demonstrated
by this vulnerability in PQCMC.

This discovery is particularly disconcerting, given the increasing reliance on cryp-
tographic solutions designed to withstand both classical and quantum computational
threats. It underscores the critical need for rigorous, dynamic security evaluations in the
development of post-quantum cryptographic protocols.

Moving forward, it is imperative that the cryptographic community continues to
scrutinize and refine post-quantum schemes. This includes not only ensuring their resistance
to quantum attacks but also verifying their security against sophisticated conventional
exploits that could compromise their foundational principles.

While the PQCMC scheme shows promise in addressing post-quantum security needs,
our findings emphasize the need for further refinement and validation of such schemes. The
cryptographic community must remain vigilant, continuously evaluating and improving
upon proposed solutions to ensure the security of our digital infrastructure in the face of
advancing computational capabilities.
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Abstract. In 1999, the Polynomial Reconstruction Problem (PRP) was introduced as
a novel hard problem in post–quantum cryptography. The first cryptographic system
based on a univariate PRP was designed by Augot and Finiasz; it was presented at
Eurocrypt 2003 and eventually broken in 2004. A bivariate PRP was suggested in
2013. The layout has been altered from the original concept of Augot and Finiasz.
In this paper, we present an extended version of the bivariate PRP cryptosystem in
a multivariate setting and utilize the Coron methods and the modified Berlekamp–
Welch algorithm. Our strategic approach enabled us to obtain the secret parameter
of the extended version of the bivariate PRP cryptosystem. We concluded that
the extended version of the bivariate PRP cryptosystem is not secure against the
Indistinguishable Chosen–Plaintext Attack (IND–CPA) as a result of this finding.
Keywords: Polynomial Reconstruction Problem · Univariate Polynomial · Bivariate
Polynomial · Multivariate Polynomial · Indistinguishable Chosen–Plaintext Attack

1 Introduction
A cryptosystem must include a hard mathematical problem to be effective and secure.
Shor created an algorithm in 1994 that makes the popular number theoretical asymmetric
cryptosystem used today unsecured when run on a full-fledged quantum computer [23].
These systems are based on the Integer Factorization Problem and the Discrete Logarithm
Problem. El Gamal, RSA, Diffie-Hellman, and Elliptic Curve Cryptography are a few of
the well-known algorithms [13]. In addition, a search for quantum-resistant algorithms has
been requested by the National Institute of Standards and Technology (NIST) [6].

Post-quantum cryptography is desirable these days for information security. A cryp-
tographic algorithm known as post-quantum cryptography is thought to resist attacks
from quantum computers [12]. Furthermore, post-quantum cryptography can be divided
into five primary categories: hash-based, multivariate, lattice, code and isogeny [10]. The
primary purpose of post-quantum cryptography is to establish measures to prevent attacks
from quantum computers [8]. Cryptosystem designers must consider the time complex-
ity and memory requirements for an attack to guarantee the security of their systems
[19]. According to [17], these characteristics are essential for verifying the security of a
cryptographic scheme. The website Quantum Algorithm Zoo lists many mathematical
problems with a probability of withstanding an attack by a quantum computer. Polynomial
Reconstruction Problem (PRP) is one of the problems listed in Quantum Algorithm Zoo.
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This problem was first presented as a hard new problem for cryptography design in 1999
[4].

In decoding formulation, this PRP is equivalent to Reed-Solomon error-correcting codes
[20, 21]. Evidence that PRP is resistant to quantum computers makes it an excellent
option for post-quantum cryptography [15]. Moreover, the PRP offers benefits in terms of
efficacy and efficiency.

Consider that the error weight, w, satisfies the equation w ≤ n−k
2 , in which k represents

the degree of a polynomial and n represents the number of elements in a vector. In that
situation, PRP is solvable in polynomial time. This has been improved from w ≤ n−k

2 to
w ≤ n −

√
kn [9]. In 2003, Augot and Finiasz [3] developed a PRP-based cryptosystem

that we refer to as AF–Cryptosystem. This cryptosystem uses a univariate polynomial
[14, 16]. The AF–Cryptosystem used two types of PRP; the first is explained in the [11],
and the second was created especially to ensure that the decryption process would be
successful. We refer to the second PRP as Augot and Finiasz Solvable PRP (AF–SPRP)
and define it as follows:

Definition 1. (Augot and Finiasz Solvable PRP) Given n, k, t and (xi, yi)i=1,··· ,n,
output any polynomial p such that deg < k and p(xi) = yi for at least t values of i where
t = n − w.

According to Definition 1, the decryption procedure in AF–Cryptosystem can occur.
One has to output a polynomial that satisfies every point on a Cartesian plane after
receiving t points. The number of elements in a vector that are zero is indicated by the
value of the parameter t. The decryption process is completed using Lagrange interpolation.

Nevertheless, Coron [7] was able to decrypt the AF–Cryptosystem completely. Later,
in 2013, Ajeena et al. developed a modified version of AF–Cryptosystem, utilizing
the Vandermonde matrix and bivariate polynomials in their design. This improved
cryptosystem is now known as the AAK–Cryptosystem. The AAK–Cryptosystem creators
believed that increasing the number of variables would enhance the system’s security and
make it more resistant to attacks.

Cryptosystem designers typically claim security in terms of the exponential time
and memory required for attacks [17]. It is a necessary feature to confirm the security
of a cryptographic scheme [19]. However, it should be noted that indistinguishability
is also a necessary feature of a cryptosystem that might be selected to be applied to
a non-exponentially large plaintext domain. A design must be protected against the
Indistinguishable Chosen-Plaintext Attack (IND–CPA) secure in order to defeat an attacker
who may re-encrypt every conceivable plaintext and compare it to the ciphertext.

If every Probabilistic Polynomial Time Adversary (PPTA) has a little "advantage"
over random guessing, then the cryptosystem is IND-CPA safe. An adversary cannot
win the IND-CPA game with a probability greater than 1

2 + ε(n) in an IND-CPA-secure
cryptosystem, where ε(n) is a negligible function in security parameter n. This research
on the extended version of AAK-Cryptosystem in a multivariate setting is intended to
determine whether or not it is IND-CPA secure.

Our contribution. This study is an expansion of our previously published work in
[25, 24], in which we demonstrate that the AAK-Cryptosystem is not safe against the
IND–CPA and provide details for recovering the secret key within the system. This paper
presents an extended version of the AAK-Cryptosystem in a multivariate setting. Our
incentive originates from Coron’s cryptanalysis of the univariate PRP-based cryptosystem.
We employ the same technique as the AAK-Cryptosystem and show that the extended
version of the AAK-Cryptosystem in a multivariate setting is not IND-CPA secure.

Organization of the article. The following is an outline of this paper. The
foundations of PRP, IND-CPA, Vandermonde matrices, AAK–Cryptosystem, multivariate
polynomial and the extended version of the AAK–Cryptosystem in multivariate settings
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are presented in Section 2. We provide a secure implementation of AAK–Cryptosystem in
a multivariate setting in Section 3. We summarize our work in Section 4.

2 Materials and Methods
This section provides the fundamentals of PRP, Vandermonde matrices, AAK–Cryptosystem,
multivariate polynomial and the extended version of the AAK–Cryptosystem in multivariate
settings that will be used in the rest of the paper.

2.1 Polynomial Reconstruction Problem (PRP)
In this section, we review the fundamental concepts of PRP. It is worth mentioning that
the generalized Reed–Solomon list decoding problem is simplified to it [22]. We then
present the PRP definition based on [11].

Definition 2. (PRP from [11]) Let p(x) = akxk + · · · + a1x + a0 be a secret polynomial
over finite field Fq. One is given access to the oracle and query values of xi ∈ Fq where
1 ≤ i ≤ k + 1. Then one needs to output the coefficients a0, a1, . . . , ak to obtain p(x).

Definition 2 makes clear that an oracle will output p(y) when it receives a value of
y ∈ Fq. Finding the coefficients a0, a1, . . . , ak is the primary objective in solving PRP [11].
Traditionally, to find the number of coefficients, k + 1 queries are required. The PRP has
a query complexity of O

(
k+1

k

)
for univariate polynomials of degree k.

2.1.1 PRP Computational Complexity

The highest possible degree of polynomial p(x) is k. Since there are a total of k + 1 = q − 1
coefficients, this results in k = q − 2. Hence,

O
(

k + 1
k

)
= O(q − 1).

Finding the value of x is not feasible if q ≈ 2n. As a result, solving PRP requires
O

(
k+1

k

)
.

2.2 Indistinguishable Chosen-Plaintext Attack (IND–CPA)
To prevent attacks on the cryptographic protocol, every cryptosystem must have its
fundamental security requirements examined, particularly its indistinguishability features
[26]. A security concept known as Indistinguishable under Chosen-Plaintext Attack (IND-
CPA) applies to cryptosystems in which a random oracle is contacted by a PPTA during a
two-phase session, known as the learning and challenge phases [5]. The following defines
IND-CPA:

Definition 3. (Indistinguishable under Chosen-Plaintext Attack) The IND-CPA
security model is defined by the following game between random oracle and PPTA:

1. The random oracle creates a cryptographic system, produces (PK, SK) = Gen(1n),
selects a random b ∈ {0, 1}, and publishes the public key PK while keeping the
secret key SK private.

2. The PPTA selects two messages (µ0 and µ1) and sends them to the random oracle.

3. The random oracle chooses one of the two messages at random and encrypts it before
sending the ciphertext C = enc(µb, PK) to the PPTA.
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4. The PPTA determines b′. If b′ = b, then it outputs 1; else, 0.

If there is a negligible function ε(n) for every PPTA, then a cryptosystem is indistin-
guishable under the Chosen-Plaintext Attack, where

Pr(b′ = b) ≤ 1
2 + ε(n).

An IND-CPA-secure cryptosystem prevents passive adversaries from obtaining en-
crypted message information during communication between two parties [1].

2.3 Vandermonde Method
This method can find an interpolating polynomial in two or more dimensions using
a Vandermonde matrix, also known as an alternant matrix. Consider the subsequent
collection of two-dimensional points: (x1, y1), (x2, y2), . . . , (xn, yn); let z1, z2, . . . , zn be the
points from which values must be obtained. Finding a bivariate polynomial of degree n − 1
that fits every data point is required. The steps for this method are outlined as follows:

1. Write the general formula for the bivariate polynomial of degree n − 1.

2. Determine the polynomial at the following points: (x1, y1), (x2, y2), . . . , (xn, yn).

3. Compute the solution of linear equation system.

The problem can be expressed simply as V · c = Z, where z values are vectors Z and
c is the vector of coefficients. The AAK-Cryptosystem decoding process employs this
method.

2.4 AAK-Cryptosystem
The bivariate PRP–based cryptosystem proposed by Ajeena et al. is explained below
[2]. The AAK–Cryptosystem considered the value of the parameter n, which denotes the
number of elements in a vector, along with the values for the following parameters:

Table 1: Parameters used in AAK–Cryptosystem.

Parameter Remark
Fq A finite field of size q
n The quantity of elements within a vector
k Its dimension
W The big error vector, E’s weight when PRP is difficult which, W > n−k

2 [2]
w The small error, e’s weight which gives PRP the ability to decrypt the

ciphertext where w ≤ n−k
2 [7]

Remark 1. The highest possible number of nonzero items in a vector is represented by the
value w.
Remark 2. The value n − w is the number of zeros in a vector.

The designers in [2] created a cryptosystem with the following algorithms by using the
above listed parameters:
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Algorithm 1 Key Generation Process
Input: Parameters (q, n, k, W, w)
Output: Public Key, PK and SK pair (C, E)

1: Alice covertly creates a monic bivariate polynomial p(X, Y ) with a degree of k − 1 for
X and Y, an error vector E with the weight of W.

2: After computing the codeword C = ev(p(X, Y )) = p(xi, yi), where xi, yi ∈ Fq, Alice
calculates PK = C + E.

3: The public key, PK and secret key pair (C, E) are output.

Algorithm 2 Encryption Process
Input: Message, µ ∈ Fq

Output: Ciphertext, CT
1: Bob wishes to transmit a k + 1-length polynomial message µ(X, Y ).
2: By computing µ = ev(µ(X, Y )) = µ(xi, yi), the message is encoded into a codeword µ.
3: Bob constructs a small error vector e with a weight of w and α ∈ Fq at random.
4: Alice receives ciphertext CT = µ + α × PK + e from Bob.

2.4.1 Proof of Correctness

In this section, we present a proof of correctness for the decryption algorithm in AAK-
Cryptosystem since the proof was not presented in [2].

Proposition 1. The message polynomial µ(X, Y ) can be retrieved via the AAK-Cryptosystem
decryption algorithm.

Proof. We proof that when we have the ciphertext CT, we can retrieve the message µ(x, y),
observe that:

CT = µ + α × PK + e

= µ + α × (C + E) + e.
(1)

From E, we find the position of zero elements. Consider the shortened codes for e, C, µ
and CT are e, C, µ and CT respectively. Then, equation (1) turns out to be

CT = µ + α × C + e. (2)

Based on (2), µ + α × C ∈ RSk. Correct CT to obtain µ̃ + α × C̃, since the weight of e is
less than the error correction capacity RSk. Using the Vandermonde method, a unique
polynomial q(x, y) to the power of k − 1 is computed; as a result, we obtain

ev(q(xi, yi)) = µ̃i + α × C̃i (3)

for i ∈ {1, 2, . . . , n}. We know that ev(q(xi, yi)) = q(xi, yi), thus, C̃ is equivalent to
ev(p(xi, yi)) = p(xi, yi) and µ̃ is equivalent to ev(µ(xi, yi)) = µ(xi, yi), therefore

q(xi, yi) = µ(xi, yi) + αp(xi, yi)
µ(xi, yi) = q(xi, yi) − αp(xi, yi).

(4)

From here, we can retrieve message polynomial µ(x, y).
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Algorithm 3 Decryption Process
Input: Ciphertext, CT
Output: Message polynomial, µ(X, Y )

1: Alice determines CT = µ + α × C + e for i where Ei = 0.
2: The C̃T = µ̃ + α × C̃ can be retrieved where Alice corrects the CT .
3: Alice evaluates a unique polynomial q(X, Y ) with the degree of k − 1 using the

Vandermonde method.
4: Alice identifies the initial coefficient with the highest degree in q(X, Y ) where the

initial coefficient is the value of α.
5: Polynomial µ(X, Y ) can be retrieved when Alice computes q(X, Y ) − αp(X, Y ).

2.5 Multivariate Polynomial
According to [18], a function defined by a polynomial is a polynomial function. Let f
be a function from real numbers R to R, defined as f(x) = 8x2 + 2x + 5, a one-variable
polynomial. As in the case of f(x, y, z) = 3yz + 2x + 4y + z + 7, a polynomial with multiple
variables is a polynomial function having multiple inputs. A multivariate polynomial,
also known as a multilinear polynomial, is linear in each variable independently but not
simultaneously. The following is a definition of a multivariate polynomial:
Definition 4. A multivariate polynomial of degree k − 1 with its corresponding constant
coefficients, δ’s is given by

f(χ) = f(x1, x2, x3, . . . , xβ)
= δi1i2i3...ik−1ik

xi1
1 xi2

2 xi3
3 . . . x

ik−1
β−1 xik

β + . . . + δ111...11x1
1x1

2x1
3 . . . x1

β−1x1
β

+ δ111...10x1
1x1

2x1
3 . . . x1

β−1x0
β + δ111...01x1

1x1
2x1

3 . . . x0
β−1x1

β

+ δ1000...00x1
1x0

2x0
3 . . . x0

β−1x0
β + δ0111...11x0

1x1
2x1

3 . . . x1
β−1x1

β

+ δ0111...10x0
1x1

2x1
3 . . . x1

β−1x0
β + . . . + δ000...01x0

1x0
2x0

3 . . . x0
β−1x1

β + δ000...0

where iκ represents the exponent for each variable in the particular monomial where
iκ ∈ {0, 1, . . . , k − 1}. Next, β is the number of variables in a polynomial and χ represents
the variable vector of a polynomial.

The multivariate polynomial used in this research is a monic multivariate polynomial
and has the highest degree up to k − 1 with respect to all variables in χ.
Example 1. Suppose β = 2 and k = 2. From Definition 4, we will produce a 2 variable
polynomial of degree 1. That is,

f(x, y) = δ11xy + δ10x + δ01y + δ00

where δ is the constant coefficient and iκ ∈ {0, 1}.
Example 2. Suppose β = 3 and k = 2. From Definition 4, we will produce a 3 variable
polynomial of degree 1. That is,

f(x, y, z) = δ111xyz + δ110xy + δ101xz + δ100x + δ011yz + δ010y + δ001z + δ000

where δ is the constant coefficient and iκ ∈ {0, 1}.
Example 3. Suppose β = 3 and k = 3. From Definition 4, we will produce a 3 variable
polynomial of degree 2. That is,

f(x, y, z) = δ222x2y2z2 + δ221x2y2z + δ220x2y2 + δ212x2yz2 + δ211x2yz + δ202x2z2

+ δ122xy2z2 + δ121xy2z + δ112xyz2 + δ111xyz + δ110xy + δ101xz

+ δ100x + δ022y2z2 + δ011yz + δ010y + δ001z + δ000
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where δ is the constant coefficient and iκ ∈ {0, 1, 2}.

2.6 The Extended Version of the AAK-Cryptosystem in Multivariate
Setting

In this section, we described the algorithm for multivariate PRP cryptosystem based on
the AAK-Cryptosystem. The following is the algorithm:

Algorithm 4 Key Generation Process
Input: Parameters (q, n, k, W, w)
Output: Public Key, PK and SK pair (C, E)

1. Alice secretly generates monic multivariate polynomial p(X1, X2, . . . , Xβ) of
degree equals to k − 1 with respect to all variables and big error vector E with
the weight, W.

2. Alice calculates codeword C = ev(p(X1, X2, . . . , Xβ)) = p(x1,i, x2,i, . . . , xβ,i)
where x1,i, x2,i, . . . , xβ,i ∈ Fq and calculates PK = C + E.

3. Publish public key, PK secret key pair (C, E).

Algorithm 5 Encryption Process
Input: Message, µ ∈ Fq

Output: Ciphertext, CT

1. Bob wants to deliver a message polynomial µ(X1, X2, . . . , Xβ) with length k + 1.
2. The message is encoded into a codeword µ by calculating µ =

ev(µ(X1, X2, . . . , Xβ)) = µ(x1,i, x2,i, . . . , xβ,i).
3. Bob randomly generates α ∈ Fq and small error vector e with the weight, w.
4. Bob calculates ciphertext CT = µ + α × PK + e and delivers the ciphertext to

Alice.

Algorithm 6 Decryption Process
Input: Ciphertext, CT
Output: Message, µ ∈ Fq

1. For i, where Ei = 0, determine CT = µ + α × C + e.
2. Correct CT to obtain C̃T = µ̃ + α × C̃.
3. Compute unique polynomial q(X1, X2, . . . , Xβ) of degree k − 1 by using Vander-

monde method.
4. Determine the leading coefficient q(X1, X2, . . . , Xβ).
5. Compute µ(X1, X2, . . . , Xβ) = q(X1, X2, . . . , Xβ) − αp(X1, X2, . . . , Xβ).

2.6.1 Proof of Correctness for the AAK-Cryptosystem in Multivariate Setting

We presented the proof of correctness for multivariate PRP cryptosystem based on the
AAK-Cryptosystem. The following is the proof of correctness:

Proposition 2. The decryption algorithm for the AAK-Cryptosystem in a multivariate
setting is correct.



82 A Cryptanalysis on the Bivariate Cryptosystem in a Multivariate Setting

Proof. We want to prove that from the ciphertext CT, the message µ(X1, X2, . . . , Xβ)
can be obtained, observe the following:

CT = µ + α × PK + e

= µ + α × (C + E) + e.
(5)

Observe the position Ei = 0. Given that µ, C, e and CT represent as the shortened code
for µ, C, e and CT respectively. Now, (5) becomes

CT = µ + α × C + e. (6)

From (6), µ+α×C ∈ RSk. Provided that e has the weight that is less than error correction
capacity RSk then CT can be corrected and find µ̃ + α × C̃. The Vandermonde method is
used to compute the unique polynomial q(X1, X2, . . . , Xβ) of degree k − 1 and

ev(q(x1,i, x2,i, . . . , xβ,i)) = µ̃i + α × C̃i (7)

for i ∈ {1, 2, . . . , n}. Since we know that ev(q(x1,i, x2,i, . . . , xβ,i)) = q(x1,i, x2,i, . . . , xβ,i),
C̃ = ev(p(x1,i, x2,i, . . . , xβ,i)) = p(x1,i, x2,i, . . . , xβ,i) and µ̃ = ev(µ(x1,i, x2,i, . . . , xβ,i)) =
µ(x1,i, x2,i, . . . , xβ,i) then

q(x1,i, x2,i, . . . , xβ,i) = µ(x1,i, x2,i, . . . , xβ,i) + αp(x1,i, x2,i, . . . , xβ,i)
µ(x1,i, x2,i, . . . , xβ,i) = q(x1,i, x2,i, . . . , xβ,i) − αp(x1,i, x2,i, . . . , xβ,i).

(8)

From (8), the message µ(X1, X2, . . . , Xβ) can be retrieved.

3 Result
In this section, we present that the extended version of AAK–Cryptosystem is not IND–CPA
secure. We also provide a numerical illustration.

3.1 Cryptanalysis of the Extended Version of AAK-Cryptosystem
Proposition 3. Let M(λ) be a matrix, M ′(λ) be the corresponding sub–square matrix
of M(λ) and polynomial f(λ) = det M ′(λ). If the adversary can correctly ascertain value
µ + e, then given public key PK and ciphertext CT, the adversary can recover secret key,
SK α in polynomial time.

Proof. Let CTi, PKi and ei be vector elements in CT, PK and e, respectively. That is,

CTi = µ(x1,i, x2,i, . . . , xβ,i) + α · PKi + ei, ∀ 1 ≤ i ≤ n

and
PKi = Ci + Ei, ∀ 1 ≤ i ≤ n.

Since the vector C is from the evaluation of polynomial p(x1,i, x2,i, . . . , xβ,i). Note that
from Algorithm 4, a monic polynomial p(x1,i, x2,i, . . . , xβ,i) has the highest power up to
k − 1 with respect to all the variables and the length of polynomial µ(x1,i, x2,i, . . . , xβ,i)
must be k + 1. Consider the following set of equations:

∃ V, µ, α





deg(V ) ≤ k − 1, V ̸= 0
∀i, V (x1,i, x2,i, . . . , xβ,i) · (CTi − α × PKi)

= V (x1,i, x2,i, . . . , xβ,i) · µ(xi, yi, . . . , θi)
(9)
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∃ V, N, λ





deg(V ) ≤ k − 1, V ̸= 0, deg(N) ≤ k − 1
∀i, V (x1,i, x2,i, . . . , xβ,i) · (CTi − λ × PKi)

= N(x1,i, x2,i, . . . , xβ,i)
(10)

it is clear within (10) that when λ = α one will have N(x1,i, x2,i, . . . , xβ,i) = µ(x1,i, x2,i, . . . ,
xβ,i) · V (x1,i, x2,i, . . . , xβ,i). For a given λ, equation (10) gives 2β−1k2 unknowns that
are the coefficients of polynomials V (x1,i, x2,i, . . . , xβ,i) and N(x1,i, x2,i, . . . , xβ,i) and β is
the number of variables in a polynomial where β ≠ 1. Hence, V (x1,i, x2,i, . . . , xβ,i) and
N(x1,i, x2,i, . . . , xβ,i) are as follows,

V (x1,i, x2,i, . . . , xβ,i) = v2β−2k2−1xk−1
1,i xk−1

2,i . . . xk−1
β,i + . . . + v3x1

1,ix
0
2,i . . . x0

β,i

+ v2x0
1,ix

1
2,i . . . x0

β,i + v1x0
1,ix

0
2,i . . . x1

β,i + v0x0
1,ix

0
2,i . . . x0

β,i

N(x1,i, x2,i, . . . , xβ,i) = n2β−2k2−1xk−1
1,i xk−1

2,i . . . xk−1
β,i + . . . + n3x1

1,ix
0
2,i . . . x0

β,i

+ n2x0
1,ix

1
2,i . . . x0

β,i + n1x0
1,ix

0
2,i . . . x1

β,i + n0x0
1,ix

0
2,i . . . x0

β,i

which the coefficients for V (x1,i, x2,i, . . . , xβ,i) and N(x1,i, x2,i, . . . , xβ,i) can be represented
as the coordinate vector, Y where

Y T = (v0, v1, . . . , v2β−2k2−1, n0, n1, . . . , n2β−2k2−1). (11)

Next, a matrix M(λ) is created by the following entries,

M(λ)i,a1,a2,...,aβ
= (CTi − λ · PKi) · xa1

1,i · xa2
2,i · . . . · x

aβ

β,i (12)

and
M(λ)i,a1,a2,...,aβ

= −xa1
1,i · xa2

2,i · . . . · x
aβ

β,i (13)

where i ∈ {1, . . . , n}, a1 ∈ {0, . . . , k − 1}, a2 ∈ {0, . . . , k − 1}, . . . , aβ ∈ {0, . . . , k − 1}
for (12) and (13). Equation (12) is used for the first half columns of M(λ) where the
values of a and b are based on consecutive exponents of each monomial from polyno-
mial p(x1,i, x2,i, . . . , xβ,i). Next, equation (13) is used for the next half columns of M(λ)
where the values of a and b are based on consecutive of each monomial from polynomial
p(x1,i, x2,i, . . . , xβ,i) as well. Hence, M(λ) can be a rectangular or a square matrix.

Let M(λ) be a matrix with dimension r × s. There are two cases for a rectangular matrix
where

i) For the case of r > s, select a s × s sub-square matrix M ′(λ) in M(λ).

ii) For the case of r < s, select a r × r sub-square matrix M ′(λ) in M(λ).

By using equations (12) and (13), and with numerical input of public values (x1,i, x2,i, . . . ,
xβ,i), we construct M(λ), where λ represents the possible value of α. From equation (12),
we have

M(λ)1,0,0,...,0 = (CT1 − λ · PK1) · (CT1 − λ · PK1) · x0
1,1 · x0

2,1 · . . . · x0
β,1

= (CT1 − λ · PK1)

M(λ)1,1,0,...,0 = (CT1 − λ · PK1) · (CT1 − λ · PK1) · x1
1,1 · x0

2,1 · . . . · x0
β,1

= (CT1 − λ · PK1) · x1,1
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M(λ)1,0,1,...,0 = (CT1 − λ · PK1) · (CT1 − λ · PK1) · x0
1,1 · x1

2,1 · . . . · x0
β,1

= (CT1 − λ · PK1) · x2,1

...

M(λ)1,0,0,...,1 = (CT1 − λ · PK1) · (CT1 − λ · PK1) · x0
1,1 · x0

2,1 · . . . · x1
β,1

= (CT1 − λ · PK1) · xβ,1

...

M(λ)n,k−1,k−1,k−1,...k−1 = (CTn − λ · PKn) · xk−1
1,n · xk−1

2,n · . . . · xk−1
β,n

From equation (13), we have

M(λ)1,0,0,...,0 = −x0
1,1 · x0

2,1 · . . . · x0
β,1 = −1 (mod q)

M(λ)1,1,0,...,0 = −x1
1,1 · x0

2,1 · . . . · x0
β,1 = −x1 (mod q)

M(λ)1,0,1,...,0 = −x0
1,1 · x1

2,1 · . . . · x0
β,1 = −x2,1 (mod q)

...

M(λ)1,0,0,...,1 = −x0
1,1 · x0

2,1 · . . . · x1
β,1 = −xβ,1 (mod q)

...

M(λ)n,k−1,k−1,k−1,...k−1 = −xk−1
1,n · xk−1

2,n · . . . · xk−1
β,n (mod q)

Next, we construct the matrix M(λ) utilizing the above equations and we get M(λ) in
Appendix A. When equations (12) and (13) are multiplied by V (x1,i, x2,i, . . . , xβ,i) and
N(x1,i, x2,i, . . . , xβ,i), respectively, we have

V (x1,i, x2,i, . . . , xβ,i) · M(λ)i,a1,a2,...,aβ
= (CTi − λ · PKi) · xa1

1,i · xa2
2,i · . . . ·

x
aβ

β,i · V (x1,i, x2,i, . . . , xβ,i) (14)

and

N(x1,i, x2,i, . . . , xβ,i) · M(λ)i,a1,a2,...,aβ
= −xa1

1,i · xa2
2,i · . . . · x

aβ

β,i·
N(x1,i, x2,i, . . . , xβ,i). (15)

The summation of (14) and (15) is

(CTi − λ · PKi) · xa1
1,i · xa2

2,i · . . . · x
aβ

β,i · V (x1,i, x2,i, . . . , xβ,i)−
xa1

1,i · xa2
2,i · . . . · x

aβ

β,i · N(x1,i, x2,i, . . . , xβ,i). (16)

Since N(x1,i, x2,i, . . . , xβ,i) = µ(x1,i, x2,i, . . . , xβ,i) · V (x1,i, x2,i, . . . , xβ,i), (16) becomes

(CTi − λ · PKi) · xa1
1,i · xa2

2,i · . . . · x
aβ

β,i · V (x1,i, x2,i, . . . , xβ,i) − xa1
1,i · xa2

2,i · . . . · x
aβ

β,i·
µ(x1,i, x2,i, . . . , xβ,i) · V (x1,i, x2,i, . . . , xβ,i). (17)
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Equations (9) and (10) state that λ = α and V (x1,i, x2,i, . . . , xβ,i) · (CTi − α × PKi) =
V (x1,i, x2,i, . . . , xβ,i) · µ(x1,i, x2,i, . . . , xβ,i); hence,

xa1
1,i · xa2

2,i · . . . · x
aβ

β,i · µ(x1,i, x2,i, . . . , xβ,i) · V (x1,i, x2,i, . . . , xβ,i) − xa1
1,i · xa2

2,i · . . . · x
aβ

β,i·
µ(x1,i, x2,i, . . . , xβ,i) · V (x1,i, x2,i, . . . , xβ,i) = 0. (18)

As a result of equation (12) multiplied by V (x1,i, x2,i, . . . , xβ,i) and equation (13) multiplied
by N(x1,i, x2,i, . . . , xβ,i), the summation of (14) and (15) is equal to 0 as stated in (14).
By utilizing the matrix representation given by M(λ), and the vector Y as defined in (11),
equation (18) can be put forward as the following:

M(λ) · Y = 0, Y ̸= 0. (19)

There are two types of matrix M(λ) which are rectangular matrix and square matrix. For
rectangular matrix M(λ) we need to follow cases (i) and (ii) to find sub-square matrix M ′(λ).
Meanwhile, for square matrix M(λ) we take M(λ) as M ′(λ) to compute f(λ) = det(M ′(λ)).
Next, a sub-square matrix M ′(λ) can be invertible when the determinant is not equal to 0.
Next, we need to identify the parameter λ from the matrix M ′(λ), which was constructed
by relations (9) and (10). Given relation,

M ′(λ) · Y = 0 (mod q) (20)

the chosen rows or columns in M(λ) can be arbitrary as long as the summation of (14)
and (15) equals 0. Since equation (20) corresponds to a vector Y with elements not all
equal to 0, then Y corresponds to the null space of M ′(λ). From here, we can see that
M ′(λ) is non-invertible, and its determinant for M ′(λ) is 0. As such, λ can be determined
from the relation det(M ′(λ)) = 0. Hence, a solution of α must be a root of the function:

f(λ) = det(M ′(λ)). (21)

To this end, the degree of polynomial f(λ) is directly pertinent to the number of columns
containing λ in M ′(λ). The relation n

2 gives the maximum number of columns possible.
Note that n refers to the number of elements in the ciphertext, CT vector. Observe that
the number of elements in a vector cannot be exponentially large for the multivariate
cryptosystem to be practical. Thus, the maximum number of roots is not exponentially
many. Hence, if the value µ + e is known to the adversary, then the adversary can test all
possible values of α in polynomial time.
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3.1.1 Algorithm for Proposition 3

Algorithm 7 Retrieving secret key α via Proposition 3
Input: Public key, PK and ciphertext, CT .
Output: Secret key, α.

1. For i ∈ {1, . . . , n}, a1 ∈ {0, . . . , k−1}, a2 ∈ {0, . . . , k−1}, . . . , aβ ∈ {0, . . . , k−1},
construct matrix M(λ):

2. Compute first half column using M(λ)i,a1,a2,...,aβ
= (CTi − λ · PKi) · xa1

1,i · xa2
2,i ·

. . . · x
aβ

β,i.

3. Compute second half column using M(λ)i,a1,a2,...,aβ
= −xa1

1,i · xa2
2,i · . . . · x

aβ

β,i.
4. Get [r, s] = M(λ) where r represents as number of rows and s represents as

number of columns for matrix M(λ).
5. For the case r = s, let M ′(λ) = M(λ).
6. For the case r > s, let M ′(λ) be an s × s sub-square matrix in M(λ).
7. For the case r < s, let M ′(λ) be an r × r sub-square matrix in M(λ).
8. Compute determinant, det(M ′(λ)).
9. Solve f(λ) = det(M ′(λ)) = 0.

10. List all roots of f(λ) which contains all possible candidates of the secret key α.
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3.1.2 Numerical Illustration of Proposition 3

This section shows a numerical illustration of Proposition 3 on a three variables PRP.
Given n = 16, k = 2, w = 1, W = 8, x = (4, 3, 2, 1, 2, 1, 2, 3, 4, 3, 5, 7, 9, 6, 8, 10), y =
(1, 1, 2, 2, 3, 3, 4, 4, 5, 5, 6, 6, 7, 7, 8, 8), z = (2, 4, 6, 8, 10, 1, 3, 5, 7, 9, 2, 3, 6, 7, 3, 7) and in F17.
The private polynomial is given by,

p(x, y, z) = xyz + 3xy + 2xz + 4yz + 4x + y + 2z + 4.

The big error vector, E is given by,

E = (1, 2, 3, 4, 1, 2, 3, 4, 0, 0, 0, 0, 0, 0, 0, 0).

The public key is:

PK = C + E

where C = ev(p(x, y, z)). We compute C as follows:

p(4, 1, 2) = 1, p(3, 1, 4) = 1, p(2, 2, 6) = 15, p(1, 2, 8) = 9,

p(2, 3, 10) = 1, p(1, 3, 1) = 5, p(2, 4, 3) = 11, p(3, 4, 5) = 15,

p(4, 5, 7) = 10, p(3, 5, 9) = 11, p(5, 6, 2) = 14, p(7, 6, 3) = 2,

p(9, 7, 6) = 1, p(6, 7, 7) = 1, p(8, 8, 3) = 0, p(10, 8, 7) = 6.

Hence, C = (1, 1, 15, 9, 1, 5, 11, 15, 10, 11, 14, 2, 1, 1, 0, 6). Then, compute PK where

PK = C + E

= (1, 1, 15, 9, 1, 5, 11, 15, 10, 11, 14, 2, 1, 1, 0, 6) + (1, 2, 3, 4, 1, 2, 3, 4, 0, 0, 0, 0, 0,

0, 0, 0)
= (2, 3, 1, 13, 2, 7, 14, 2, 10, 11, 14, 2, 1, 1, 0, 6).

A message polynomial µ(x, y, z) = 3y + 2z + 1 is encoded into codeword µ where µ =
ev(µ(x, y, z)). That is,

µ(4, 1, 2) = 8, µ(3, 1, 4) = 12, µ(2, 2, 6) = 2, µ(1, 2, 8) = 6,

µ(2, 3, 10) = 13, µ(1, 3, 1) = 12, µ(2, 4, 3) = 2, µ(3, 4, 5) = 6,

µ(4, 5, 7) = 13, µ(3, 5, 9) = 0, µ(5, 6, 2) = 6, µ(7, 6, 3) = 8,

µ(9, 7, 6) = 0, µ(6, 7, 7) = 2, µ(8, 8, 3) = 14, µ(10, 8, 7) = 5.

Therefore, we have

µ = (8, 12, 2, 6, 13, 12, 2, 6, 13, 0, 6, 8, 0, 2, 14, 5).

Let α = 3 ∈ F17 be the private constant and a small error vector, e is given by,

e = (3, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0)

of weight w = 1. The ciphertext CT is:
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CT = µ + α × PK + e

= (8, 12, 2, 6, 13, 12, 2, 6, 13, 0, 6, 8, 0, 2, 14, 5) + 3 × (2, 3, 1, 13, 2, 7, 14, 2, 10, 11,

14, 2, 1, 1, 0, 6) + (3, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0)
= (8, 12, 2, 6, 13, 12, 2, 6, 13, 0, 6, 8, 0, 2, 14, 5) + (6, 9, 3, 5, 6, 4, 8, 6, 13, 16, 8, 6, 3,

3, 0, 1) + (3, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0)
= (0, 4, 5, 11, 2, 16, 10, 12, 9, 16, 14, 14, 3, 5, 14, 6).

Next, proceed to attack the ciphertext, CT . Let M(λ) be the matrix of the system:

A1. M(λ)i,a,b,c = (CTi − λ · PKi) · (xi)a · (yi)b · (zi)c

A2. M(λ)i,a,b,c = −(xi)a · (yi)b · (zi)c

where i ∈ {1, . . . , 16}, a ∈ {0, 1}, b ∈ {0, 1} and c ∈ {0, 1} for (A1) and (A2). For the first
half column of matrix M(λ) we use (A1). Hence, when i = 1, a = 0, b = 0 and c = 0 then,

M(λ)1,0,0,0 = (CT1 − λ · PK1) · (x1)0 · (y1)0 · (z1)0

= (0 − λ · 2) · 40 · 10 · 20

= −2λ.

When i = 5, a = 1,b = 1 and c = 1 then,

M(λ)5,1,1,1 = (CT5 − λ · PK5) · (x5)1 · (y5)1 · (z5)1

= (2 − λ · 2) · 2 · 3 · 10
= 1 − λ.

When i = 3, a = 0, b = 1 and c = 0 then,

M(λ)3,0,1,0 = (CT3 − λ · PK3) · (x3)0 · (y3)1 · (z3)0

= (5 − λ · 1) · 20 · 21 · 60

= 10 − 2λ.

For the second half column of matrix M(λ) we use (A2). When i = 2, a = 1, b = 1 and
c = 1 then,

M(λ)2,1,1,1 = −(x2)1 · (y2)1 · (z2)1

= −(31) · (11) · (41)
= 5.

When i = 3, a = 0, b = 0 and c = 1 then,

M(λ)3,0,0,1 = −(x3)0 · (y3)0 · (z3)1

= −(20) · (20) · (61)
= 11.
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When all the entries in M(λ) are calculated then we got M(λ) in Appendix B. As we can
see from Appendix B, the dimension for M(λ) is 16 × 16. Then consider M(λ) with λ = 0
and compute the rank of the matrix M(0) by using Gaussian elimination, and we obtain
the rank equal to 16. Since M(λ) is a square matrix and the rank M(0) = 16 then we take
M(λ) to be M ′(λ). Next, compute determinant f(λ),

f(λ) = det (M ′(λ))
= 271882418359124720λ8 − 96606074550855504λ7 + 41785385885462112λ6

+ 720352515420979520λ5 − 934833858077616784λ4

− 83609531226382208λ3 + 531102247352419712λ2

− 271403260445379632λ + 117960521373046160.

The highest degree of f(λ) is 8. This coincides with that M ′(λ) has 8 columns containing
λ. Upon factoring f(λ) modulo q = 11 we obtain the following:

f(λ) = 3λ(λ6 + 11λ5 + λ4 + λ3 + 10λ2 + 5λ + 14)(λ − 3).
From here, we obtain 1 root, which is λ = 3. Inline with Proposition 3, M ′(3) is indeed a
non-invertible matrix. Next, nullspace, Y is calculated by using λ = 3. Observe the root
λ = 3 will result in

Y =




10
0
0
0
6
0
0
0
10
3
13
0
6
12
1
0




.

This shows that 2β−1k2 = 16 and Y corresponds to

Y T = (v0, v1, . . . , v15, n0, n1, . . . , n15).

3.2 Indistinguishable under Chosen Plaintext Attack on the AAK–
Cryptosystem in Multivariate Setting

This section shows that the AAK–Cryptosystem in multivariate setting is not IND-CPA
secure. Observe within the multivariate PRP cryptosystem that the weight of a small
error vector, e, must be w < n−k

2 which means there are n − w elements equal to 0 in a
small error vector, e. Therefore, we can apply this fact to show that the multivariate PRP
cryptosystem is not IND-CPA secure. The proposition for this attack is as follows,

Proposition 4. If vector µ + e has been obtained, then multivariate PRP cryptosystem is
not IND-CPA secured.



90 A Cryptanalysis on the Bivariate Cryptosystem in a Multivariate Setting

Proof. PPTA will do the following:

1. Choose two messages, µ0, µ1 in which identical elements do not share the same
position in the vector and send it to the random oracle.

2. Random oracle relays back the ciphertext where CT = µb + α × PK + e.

3. Compute α based on Proposition 3.

4. Compute CT − α × PK = µb + e.

5. Since PPTA knows about secret key, α, then PPTA can check µb + e vector entry
positions. From the fact that e has vector elements equal to 0 totaling n − w, then
PPTA can identify b.

Note that if the PPTA chooses a wrong root from f(λ), it will yield to a wrong value of α.
As such, CT −α×PK would result in a meaningless vector to compare with either µ0 or µ1.
The adversary eventually chooses the next root available. This process is feasible since the
number of roots is not exponentially many. From here, we can see that multivariate PRP
cryptosystem is not IND-CPA because PPTA can identify which vector µb was utilized to
be encrypted with Pr(b′ = b) = 1. Furthermore, on a side note, PPTA can also identify
vector e.

3.2.1 Algorithm for Proposition 4

We present our Algorithm for Proposition 4 on proving that multivariate PRP cryptosystem
is not IND-CPA secure.

Algorithm 8 IND-CPA on multivariate PRP cryptosystem via Proposition 4
Input: Messages pair (µ0, µ1)
Output: b where b ∈ {0, 1}

1. PPTA chooses 2 messages, (µ0, µ1) where identical elements do not share the
same position in the vectors.

2. PPTA transmits 2 messages to random oracle.
3. Random oracle chooses 1 message between (µ0, µ1).
4. Random oracle encrypts the message and outputs CT = µb + α × PK + e.
5. PPTA calculates α.
6. PPTA calculates CT − α × PK = µb + e.
7. PPTA check µb + e with (µ0, µ1) to identify b.

3.2.2 A Three Variables Numerical Illustration of Proposition 4

This section presents a numerical illustration of IND-CPA on a three variables PRP cryp-
tosystem based on Proposition 4. Given n = 16, x = (4, 3, 2, 1, 2, 1, 2, 3, 4, 3, 5, 7, 9, 6, 8, 10),
y = (1, 1, 2, 2, 3, 3, 4, 4, 5, 5, 6, 6, 7, 7, 8, 8) and z = (2, 4, 6, 8, 10, 1, 3, 5, 7, 9, 2, 3, 6, 7, 3, 7) in
F17. The private polynomial is given by,

p(x, y, z) = xyz + 3xy + 2xz + 4yz + 4x + y + 2z + 4.

The big error vector, E is given by,

E = (1, 2, 3, 4, 1, 2, 3, 4, 0, 0, 0, 0, 0, 0, 0, 0).
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The public key is:

PK = C + E

where C = ev(p(x, y, z)) hence,

p(4, 1, 2) = 1, p(3, 1, 4) = 1, p(2, 2, 6) = 15, p(1, 2, 8) = 9,

p(2, 3, 10) = 1, p(1, 3, 1) = 5, p(2, 4, 3) = 11, p(3, 4, 5) = 15,

p(4, 5, 7) = 10, p(3, 5, 9) = 11, p(5, 6, 2) = 14, p(7, 6, 3) = 2,

p(9, 7, 6) = 1, p(6, 7, 7) = 1, p(8, 8, 3) = 0, p(10, 8, 7) = 6.

Therefore,

PK = C + E

= (1, 1, 15, 9, 1, 5, 11, 15, 10, 11, 14, 2, 1, 1, 0, 6) + (1, 2, 3, 4, 1, 2, 3, 4, 0, 0, 0, 0, 0,

0, 0, 0)
= (2, 3, 1, 13, 2, 7, 14, 2, 10, 11, 14, 2, 1, 1, 0, 6).

PPTA chooses two messages which are µ0(x, y, z) = 3y +2z +1 and µ1(x, y, z) = y +8z +5.
These two messages are encoded into codeword µ0 and µ1 respectively where µb =
ev(µ(x, y, z)) for b ∈ {0, 1}. For µ0(x, y, z) = xy + 2x + 4y + 3, it is encoded as follows,

µ0(4, 1, 2) = 8, µ0(3, 1, 4) = 12, µ0(2, 2, 6) = 2, µ0(1, 2, 8) = 6,

µ0(2, 3, 10) = 13, µ0(1, 3, 1) = 12, µ0(2, 4, 3) = 2, µ0(3, 4, 5) = 6,

µ0(4, 5, 7) = 13, µ0(3, 5, 9) = 0, µ0(5, 6, 2) = 6, µ0(7, 6, 3) = 8,

µ0(9, 7, 6) = 0, µ0(6, 7, 7) = 2, µ0(8, 8, 3) = 14, µ0(10, 8, 7) = 5.

Then, µ0 = (8, 12, 2, 6, 13, 12, 2, 6, 13, 0, 6, 8, 0, 2, 14, 5) is obtained. For µ1(x, y, z) = y +
8z + 5, it is encoded as follows,

µ1(4, 1, 2) = 5, µ1(3, 1, 4) = 4, µ1(2, 2, 6) = 4, µ1(1, 2, 8) = 3,

µ1(2, 3, 10) = 3, µ1(1, 3, 1) = 16, µ1(2, 4, 3) = 16, µ1(3, 4, 5) = 15,

µ1(4, 5, 7) = 15, µ1(3, 5, 9) = 14, µ1(5, 6, 2) = 10, µ1(7, 6, 3) = 1,

µ1(9, 7, 6) = 9, µ1(6, 7, 7) = 0, µ1(8, 8, 3) = 3, µ1(10, 8, 7) = 1.

Then, we get µ1 = (5, 4, 4, 3, 3, 16, 16, 15, 15, 14, 10, 1, 9, 0, 3, 1). The PPTA must ensure
that identical elements in the 2 message vectors must not share the same location. Next,
the 2 message vectors (µ0, µ1) will send by PPTA to random oracle. The random oracle
will pick one of the message vectors and encrypt it, and publishes CT where

CT = µb + α × PK + e

= (8, 12, 2, 6, 13, 12, 2, 6, 13, 0, 6, 8, 0, 2, 14, 5) + 3 × (2, 3, 1, 13, 2, 7, 14, 2, 10, 11,

14, 2, 1, 1, 0, 6) + (3, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0)
= (8, 12, 2, 6, 13, 12, 2, 6, 13, 0, 6, 8, 0, 2, 14, 5) + (6, 9, 3, 5, 6, 4, 8, 6, 13, 16, 8, 6, 3,

3, 0, 1) + (3, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0)
= (0, 4, 5, 11, 2, 16, 10, 12, 9, 16, 14, 14, 3, 5, 14, 6).

Since the value of the secret key, α, can be computed based on Proposition 3, then PPTA
will retrieve α = 3. Next, PPTA calculates the following equation,
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CT − α × PK = µb + e

and obtains µb + e = (11, 12, 2, 6, 13, 12, 2, 6, 13, 0, 6, 8, 0, 2, 14, 5). The PPTA can check
the entry positions vis-a-vis equation CT − α × PK. Therefore, PPTA can finally identify
b from µb + e because vector e has n − w elements equal to 0. To this end, the PPTA can
identify b′ = 0 with a probability equal to one.

Remark 3. We demonstrate numerically in this Remark why this fact leads to the con-
clusion that the multivariate cryptosystem is not IND-CPA secure. First, the adversary
will choose two message polynomials which are µ0(x, y, z) = 3y + 2z + 1 and µ1(x, y, z) =
y + 8z + 5. Then, adversary encodes the two messages into codewords where µ0 =
(8, 12, 2, 6, 13, 12, 2, 6, 13, 0, 6, 8, 0, 2, 14, 5) and µ1 = (5, 4, 4, 3, 3, 16, 16, 15, 15, 14, 10, 1, 9, 0, 3, 1)
and transfers the two messages to random oracle. Next, the random oracle will encrypt one
of the messages and send ciphertext, CT . With the obtained value of λ = 3, the adversary
can compute the following equation,

CT − 3 × PK = (0, 4, 5, 11, 2, 16, 10, 12, 9, 16, 14, 14, 3, 5, 14, 6) − 3×
(2, 3, 1, 13, 2, 7, 14, 2, 10, 11, 14, 2, 1, 1, 0, 6)

= (11, 12, 2, 6, 13, 12, 2, 6, 13, 0, 6, 8, 0, 2, 14, 5).
(22)

This shows that CT − α × PK = µ + e where,

µ + e = (8, 12, 2, 6, 13, 12, 2, 6, 13, 0, 6, 8, 0, 2, 14, 5) + (3, 0, 0, 0, 0, 0, 0, 0,

0, 0, 0, 0, 0, 0, 0, 0)
= (11, 12, 2, 6, 13, 12, 2, 6, 13, 0, 6, 8, 0, 2, 14, 5).

(23)

The µ + e is being compared with µ0 and µ1 to determine which message has been
encrypted and adversary also can identify which elements in µ + e contains errors. As we
can see here, µ0 is the message that used to be encrypted since µ + e has many elements
that are similar to µ0.

4 Conclusion
This paper presents an extended version of the AAK–Cryptosystem in multivariate setting.
Based on the analysis above, a set of λ is obtained from the determinant f(λ), which
contains the correct value of α. Since the weight of a small error vector, e must be n−k

2 ,
which gives us information about the zero elements in e. Hence, this shows that the
AAK–Cryptosystem in multivariate setting is not IND-CPA secure.
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Abstract. The Boomerang attack is a variant of differential attack conducted by
utilizing two independent short differential characteristics with high probability
which are can-not be combined as a longer characteristic. Related key boomerang
attack applied under assumption that the key used for encryption and decryption
are relating, which can be manipulate to find the distinguisher. This paper showed
the implementation of this attack on Mini-AES as an educational mean to give an
understanding how the related-key boomerang attack works. This paper focus on
determining the right quartet as a distinguisher bases on samples. By defining a
relation among the keys this attack builds a related-key boomerang path to identify
potential weaknesses in Mini-AES security. By carrying out differential analysis
using 28 data complexity on Mini-AES, this attack succeeded in obtaining 48 correct
quartet pairs. This attack provides critical insight into cryptographic variants that
are vulnerable to similar attacks. This research provides an in-depth understanding
of this attack and its relevance in testing the security of Mini-AES cryptographic
systems.
Keywords: Boomerang attack · Cryptanalysis · MiniAES · Related-Key

1 Introduction
The Mini Advanced Encryption Standard (Mini-AES) proposed by Phan[1] serves as a
valuable testbed for students of cryptanalysis, providing a platform for practical exploration
and analysis of the Advanced Encryption Standard (AES). It facilitates hands-on experience
in understanding the complexity of the block cipher and the special characteristics of the
AES algorithm. By offering a simplified version of AES, Mini-AES allows students to gain
insight into the basic principles of AES encryption and its vulnerability to cryptanalysis
techniques. Boomerang attacks are a significant cryptographic technique that has been
widely studied and applied in the context of various encryption algorithms. First proposed
by Wagner in 1999 [2], boomerang attacks have evolved since then, with variants and
improved techniques developed to exploit vulnerabilities in cryptographic systems. Most
notably, boomerang redirection techniques were introduced to minimize the number
of active S-boxes in the key schedule. Boomerang attacks are a variant of Differential
Cryptanalysis, where the ciphertext is considered as a series of two sub- ciphers. This attack
works using two short independence differentials with high probability which are applied
on each sub-cipher. These differentials are combined in an adaptively chosen plaintext
and ciphertext attack to exploit the property of ciphertexts having high probability [6].
Related-key attacks are attacks that exploit the relationship between keys to compromise
the reliability of encryption algorithms [3]. This attack has been studied for intensive way
in the context of various ciphertext blocks, including AES-192 and AES-256. Biryukov &
Khovratovich [4] developed the first related-key attack on the full AES-192, demonstrating
its vulnerability to this widely used encryption standard. Related-key attacks apply
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differential cryptanalysis to ciphertexts that use different but related keys and consider
the information that can be extracted from encryption under these keys [7]. Ciphertexts
with weak key schedules are vulnerable to this type of attack.

This paper aims to show the implementation of a related key-attack on a testbed
algorithm Mini-AES as a target, to give a simple illustration for an educational purpose.
Hopefully this paper can provide a good example to understanding how this attack works.
The research is limited on the search of related key boomerang distinguisher.

2 Theoretical Background

2.1 Mini Advanced Encryption Algorithm

The description Mini Advanced Encryption Standard (Mini-AES) was developed by Raphael
Chung-Wei Phan [1] as a simplified version of the AES, primarily for educational purposes
which is reffered in this section. The block size is 16-bits with input key also 16-bit length.
As in AES, the encryption process also involves 4 functions as are described in 2.1.1. The
scheme of Mini-AES is shown on Figure 1.

Figure 1: Mini-AES Scheme

2.1.1 Components of Mini-AES

There are 4 components used in Mini-AES encryption/decryption scheme. The message
P will be partitioned into blocks of 16-bits that notated as: P = (p0, p1, p2, p3) which is
represented as a matrix with 2 rows and 2 columns of 4 bits (a nibble).
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Figure 2: Matrix Representation of the 16-bit Block

2.1.1.1 NibbleSub, γ

The NibbleSub operation is a simple operation that replaces each input nibble with an
output nibble according to a 4 × 4 substitution table (S-box), as given in the table in
Figure 3. The S-box used in Mini AES is adopted from the first S-box in DES as can be
seen in Figure 3.

Figure 3: S-Box of Mini-AES

NibbleSub operation where A = (a0, a1, a2, a3) constitutes the input block and B =
(b0, b1, b2, b3) constitutes the output.

Figure 4: The Nibble Sub Operation

2.1.1.2 ShiftRow, π

The ShiftRow operation performs a left rotation on each row of the input block by a
different number of nibbles. The first row remains unchanged, while the second row is
rotated left by one nibble. This is illustrated in the Figure 5, where B = (b0, b1, b2, b3) and
C = (c0, c1, c2, c3) represents the input and output blocks respectively.

Figure 5: The ShiftRow Operation
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2.1.1.3 MixColumn, θ

The MixColumn operation takes each column of the input block and multiplies it by a
constant matrix to get a new output column, as given in the figure below. C = (c0, c1, c2, c3)
and D = (d0, d1, d2, d3) denote the input and output blocks respectively.

Figure 6: The MixColomn Operation

2.1.1.4 KeyAddition, σKi

The KeyAddition operation causes each bit of the input block, D = (d0, d1, d2, d3), to be
exclusively XORed with the corresponding bit of the i-th round key, Ki = (k0, k1, k2, k3) to
get a 16-bit long output block, E = (e0, e1, e2, e3), as shown in the figure below the round
key is derived from the key, K, by using the key schedule. For each bit, the exclusive-OR
operation causes the output bit to be ’1’ if the corresponding bits of the input block and
the round key are different. Otherwise, the output bit becomes ’0’ if the two bits are the
same.

Figure 7: The KeyAddition Operation

2.1.1.5 key Schedule

In Mini-AES, the 16-bit secret key goes through the key schedule algorithm to generate
one 16-bit round key, K0, to be used before the first round, and one 16-bit round key, K2
and K3, to be used in each round of Mini-AES. Mini-AES encryption is defined to have 2
rounds, so three round keys are needed as shown in Table 1.

2.1.2 Mini-AES Encryption and Decryption.

The application of the four components Nibble-Sub, Shift-Row, Mix-Column, and Key-
Addition together forms one round. Full Mini-AES encryption consists of two such rounds,
with the exception of Mix-Column from the last round and the addition of an extra
Key-Addition before the first round. The encryption process can be seen in Figure 8.
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Table 1: Key Schedule of Mini-AES

Putaran Nilai Kunci
0 w0 = k0

w1 = k1
w2 = k2
w3 = k3

1 w4 = w0 ⊕NibbleSub(w3)⊕ rcon(1)
w5 = w1 ⊕ w4
w6 = w2 ⊕ w5
w7 = w3 ⊕ w6

2 w8 = w4 ⊕NibbleSub(w7)⊕ rcon(2)
w9 = w5 ⊕ w8
w10 = w6 ⊕ w9
w11 = w7 ⊕ w10

Figure 8: The Mini-AES Encryption Process

The encryption can be represented as follow:

Mini-AES encryption = σK2 ◦ π ◦ γ ◦ σK1 ◦ θ ◦ π ◦ γ ◦ σK0

Where the symbol ◦ refers to function composition and the execution order is from
right to left. On the other hand, to retrieve the original plain text, the reverse process
of encryption must be performed on the ciphertext that is called as decryption. The
decryption is the reverse of encryption, where the subkey will be processed in a reversed
order and the also the Nibble-Sub. The inverse s-box of mini-AES then is computed by
inverting the input and output as is shown in Figure 9.

Figure 9: Inverse Sbox of Mini-AES

2.2 Related-Key Boomerang Attack
The related-key boomerang attack on AES, as described by Michael Gorski and Stefan
Lucks [5], is a cryptanalytic technique targeting reduced-round versions of the AES-192
cipher. First, Eli Biham et.al. [8], explain there are some definitions.
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Definition 1: Let P dan P ′ are two bit sequences of the same length. The bit-wise
XOR operation of P and P ′, P ⊕P ′, is called the difference of P, P ′. Let a be the difference
of the known bits and * being the difference of the unknown bits.

Definition 2: α → β is called differential if α is the difference of plaintext P ⊕ P ′

before a non-linear operation f(·) and β is the difference after applying the operation, i.e.
f(P )⊕ f(P ′). The probability p associated with a differential states that the difference
α turns into the difference β with probability p. The reverse direction, i.e.α ← β, has
probability p̂.

During the search of related-key boomerang distinguisher step, the cipher text is treated
as a series of two sub-ciphers EK(P ) = E1K(P ) ◦ E0K(P ), where K is the key used
for encryption and decryption. It is assumed that a differential related-key α → β for
E0 occurs with probability p, while differential related-key γ → δ for E1 occurs with
probability q, where α, β, γ, and δ are text differences. The backward direction E−1

0 and
E−1

1 of the differential related-key for E0 and E1 are denoted by α← β and γ ← δ, and
occur with probability p̂ and q̂ respectively. Related-key boomerang distinguisher involve
four unknown but related keys, namely Ka, Kb = Ka ⊕ ∆K∗, Kc = Ka ⊕ ∆K ′, and
Kd = Ka ⊕ ∆K∗ ⊕ ∆K ′, where ∆K∗ and ∆K ′ are the known. The attack works as
follows:

1. Randomly select a set of s plaintexts Pi, i ∈ {1, ..., s} and compute a set of other
plaintexts P ′

i such that P ′
i = Pi ⊕ α to ensure that Pi ⊕ P ′

i = α .

2. Encrypt Pi under Ka, i.e. Ci = EKa(Pi) and encrypt P ′
i under Kb, i.e. C ′

i =
EKb(P ′

i ).

3. Calculate the new ciphertext Di = Ci ⊕ δ and D′
i = C ′

i ⊕ δ.

4. Perform decryption of Di under Kc, i.e. Oi = E−1Kc(Di) and request decryption
of D′

i under Kd, i.e. O′
i = E−1Kd(D′

i). For each pair (Oi, O′
i), i, j ∈ {1, ..., s}

5. If Oi⊕O′
i is equal to α, keep the quartet (Pi, P ′

i , Oi, O′
i) in the set M .

A pair (Pi, P ′
j), i, j ∈ {1, ..., s} with difference α satisfies the differential α → β with

probability p. The outputs of E0 are Ai and A′
j , i.e., E0Ka(Pi) = Ai and E0Kb(P ′

j) = A′
j

having a certain difference β = Ai ⊕A′
j with probability p.

Using two ciphertexts Ci and C ′
j , new ciphertexts Di and D′

j are generated such that
Di = Ci⊕δ and D′

j = C ′
j⊕δ. Next Bi and B′

j are determined by applying decryption process
on Di and D′

j using E−1
1 Ki, i ∈ {c, d} such that Bi = E−1

1 Kc(Di) and B′
j = E−1

1 Kd(D′
j).

After passing through E−1
1 Ki, difference value δ should be mapped into difference value

γ The difference δ turns into a difference γ with probability q̂. Since δ = Ci ⊕Di and
δ = C ′

j ⊕D′
j It is known that γ = Ai ⊕Bi and γ = A′

j ⊕B′
j with probability q̂2. Since it

is known that Ai ⊕A′
j = β with probability p, then (Ai ⊕Bi)⊕ (Ai ⊕A′

j)⊕ (A′
j ⊕B′

j) =
γ ⊕ β ⊕ γ = β = (Bi ⊕ B′

j) holds with probability p · q̂2. The difference β turns into
a difference α after passing through the differential E−1

0 Ki with probability p̂. Thus, a
plaintext pair (Pi, P ′

j) with Pi ⊕ P ′
j = α produces a new plaintext pair (Oi, O′

j) where
Oi ⊕O′

j = α with probability p · p̂ · q̂2. A quartet containing these two pairs is defined as:

Quartet = {(Pi, P ′
j , Oi, O′

j) | Pi ⊕ P ′
j = α, Oi ⊕O′

j = α}

The process of finding the right quartet as a distinguisher can be seen in Figure 10.
The next definition is about the right related-key boomerang quartet
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Figure 10: Boomerang Attack Scheme [8]

Definition 3. A quartet (Pi, P ′
j , Oi, O′

j) satisfying

Pi ⊕ P ′
j = α = Oi ⊕O′

j ,

Ai ⊕A′
j = β = Bi ⊕B′

j ,

Ai ⊕Bi = γ = A′
j ⊕B′

j ,

Ci ⊕Di = δ = Cj ⊕Dj

is referred to as a correct boomerang related-key quartet, which occurs with probability
Prc = p · p̂ · q̂2. A quartet (Pi, P ′

j , Oi, O′
j) that only satisfies the condition Pi ⊕ P ′

j = α =
Oi ⊕O′

j is called a false boomerang related-key quartet. The right related-key boomerang
can be used to perform the key recovery.

The recovery attack can be performed by the attacker using the right related-key
boomerang distinguishers under assumption that they do not know about the internal state
of Ai, A′

j , Bi, B′
j . Let ka, kb, kc, and kd be the key bits of the last round key derived from

the keys Ka, Kb, Kc, and Kd. Let dk(C) be the one-round partial decryption of C under
key bit k. The related-key bits as kb = ka⊕∆k∗, kc = ka⊕∆k′, and kd = ka⊕∆k∗⊕∆k′,
where ∆k∗ and ∆k′ are the differences of the last round key bits. This difference comes
from the difference of the cipher keys ∆K∗ and ∆K ′. The key recovery step works as
follows:

Let M is the set of all possible related key boomerang quartets. For each key bit
combination Ka:

1. Initialize the counter for each combination of key bits with zero.

- For all quartets (P, P ′, O, O′) that are simulated in M :

2. Perform encryption of P, P ′, O, O′ under Ka, Kb, Kc, and Kd respectively and get the
cipher quartet C, C ′, D, D′. Decrypt the ciphertexts C, C ′, D, D′ under ka, kb, kc, kd,
i.e. C = dka

(C), C ′ = dkb
(C ′), D = dkc

(D), and D′ = dkd
(D′).

3. Test whether the difference between C ⊕D and C
′ ⊕D′ has the difference expected
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by the attacker depending on the related-key differential used. Increase the counter
for the key candidate tested if the difference is satisfied in both pairs.

4. The key bit output ka with the highest counter is the correct key.

There are four possibe cases at step 3, since the set M might contain both correct and
incorrect boomerang related-key quartets, and the key bit combination Ka can be either
correct or incorrect. A correct related-key boomerang quartet with the correct key bits
will have the desired difference required to pass the test in Step 3.

3 Result and Discussion
As mentioned above, this paper only simulates the search of related-key boomerang
distinguisher in order to give the knowledge how this attack is conducted. In conducting
the search of related-key boomerang on Mini-AES, there are 4 steps should be performed.

First step is identifying the related keys. The process of identifying related keys
is done by generating several chosen keys to find four keys Ka, Kb, Kc, and Kd that are
related to each other. For example as in paper[5], the keys are related such that

Kb = Ka⊕∆K∗,

Kc = Ka⊕∆K ′,

Kd = Ka⊕∆K∗ ⊕∆K ′

Second is identifying the key differences of Ka and Kb. In this experiment the
differences are determined as follows:

1. Generate Ka and Kb that have different values at byte positions 0 and 2 (active
bytes), while the values at byte positions 1 and 3 are passive bytes or bytes that
have the same value between Ka and Kb.

Ka = 0000 0000 0000 0000
∆K∗ = 1111 0000 1111 0000

Kb = 1111 0000 1111 0000

2. Expanding Ka and Kb by two round

Ka0 = 0000 0000 0000 0000
Ka1 = 1111 1111 1111 1111
Ka2 = 1010 0101 1010 0101

Kb0 = 1111 0000 1111 0000
Kb1 = 0000 0000 1111 1111
Kb2 = 0101 0101 1010 0101

3. Perform XOR operation between Ka and Kb on each subkey for two rounds. So that
the result of XOR Ka and Kb in each round is called key differences ∆K∗

∆K∗ = 1111 0000 1111 0000
∆K∗

0 = 1111 0000 1111 0000
∆K∗

1 = 1111 1111 0000 0000
∆K∗

2 = 1111 0000 0000 0000



Ferdinan Setyo Puji and Santi Indarjani 105

Step three is identifying the key differences of Kc and Kd. The steps to find
the key differences of Kc are as follows:

1. Perform an XOR operation between Ka operation between Ka and the 16-bit
characteristic ∆K ′, resulting in the candidate key Kc.

Ka = 0000 0000 0000 0000
∆K ′ = 1111 0000 0000 0000

Kc = 1111 0000 0000 0000

2. Expanding Ka and Kc by two round.

Ka0 = 0000 0000 0000 0000
Ka1 = 1111 1111 1111 1111
Ka2 = 1010 0101 1010 0101

Kc0 = 1111 0000 0000 0000
Kc1 = 0000 0000 0000 0000
Kc2 = 1100 1100 1100 1100

3. Perform XOR operation between Ka and Kcon each subkey for two rounds. So that
the result of XOR Ka and Kc in each round is called key differences ∆K ′

∆K ′ = 1111 0000 0000 0000
∆K ′

0 = 1111 0000 0000 0000
∆K ′

1 = 1111 1111 1111 1111
∆K ′

2 = 0110 1001 0110 1001

Steps to find key differences key differences Kd is as follows:
1. Perform an XOR operation between Kc and the 16-bit characteristic ∆K∗, resulting

in the candidate key Kd.

Kc = 1111 0000 0000 0000
∆K∗ = 1111 0000 1111 0000

Kd = 0000 0000 1111 0000

2. Expanding Kc and Kd by two round.

Kc0 = 1111 0000 0000 0000
Kc1 = 0000 0000 0000 0000
Kc2 = 1100 1100 1100 1100

Kd0 = 0000 0000 1111 0000
Kd1 = 1111 1111 0000 0000
Kd2 = 0011 1100 1100 1100

3. Perform XOR operation between Kc and Kd on each subkey for two rounds. So that
the result of XOR Kc and Kd in each round is called key differences ∆K∗

∆K∗ = 1111 0000 1111 0000
∆K∗

0 = 1111 0000 1111 0000
∆K∗

1 = 1111 1111 0000 0000
∆K∗

2 = 1111 0000 0000 0000
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Step four, searching the related-key boomerang distinguisher on Mini-AES.

1. First generate 28 chosen plaintext P0, then performs the XOR process P0 with
difference input α, to produce in 28 chosen plaintext P ′

0. The difference input α
is defined as 1111 0000 1111 0000 so that the plain text P0 and P ′

0 will have the
difference nibble values on byte position 0 and 2 as can be seen below:

P0 = 0000 0000 0000 0000
= 0000 0000 0001 0000

...
= 1111 0000 1111 0000

P ′
0 = 1111 0000 1111 0000

= 1111 0000 1110 0000
...

= 0000 0000 0000 0000

2. The plain text P0 is encrypted one round using the key Ka, The result will be notated
as A1 such that A1 = EKa

(P0). On the other hand, the P ′
0 is encrypted using one

round using the key Kb such that A′
1 = EKb

(P ′
0). The result of A1 and A′

1 are:

A1 = 0001 0001 0001 0001
= 0001 0001 1100 0110

...
= 1001 0000 1001 0000

A′
1 = 1110 1110 0001 0001

= 1110 1110 1100 0110
...

= 0110 1111 1001 0000

3. The plain text P0 is encrypted two round using the key Ka, The result will be notated
as C2 such that C2 = EKa(P0). On the other hand, the P ′

0 is encrypted using two
round using the key Kb such that C ′

2 = EKb
(P ′

0). The result of C2 and C ′
2 are:

C2 = 1110 0001 1110 0001
= 1110 1110 1111 0001

...
= 0000 1011 0000 1011

C ′
2 = 0101 0001 1110 0101

= 0101 1110 1111 0101
...

= 1110 1011 0000 0010
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4. The XOR operation between C3 and C ′
3 with δ = 1111 0000 0000 0000 is performed,

resulting in the values D3 and D′
3.

D2 = 0001 0001 1110 0001
= 0001 1110 1111 0001

...
= 1111 1011 0000 1011

D′
2 = 1010 0001 1110 0101

= 1010 1110 1111 0101
...

= 0001 1011 0000 0010

5. D2 is decrypted one round using Kc, B2 = E′
Kc

(D2), and also the D′
2 is decrypted

one round using Kd, B′
2 = E′

Kd
(D′2). For knowing the value of β, an XOR operation

is performed between B2 with B′
2:

B0 = 0110 1101 1111 0101
= 0110 0111 0111 0000

...
= 0011 0001 1001 1100

B′
0 = 1100 0010 1111 0101

= 1100 1011 0111 0000
...

= 1001 1110 1001 1100

6. D2 is decrypted two round using Kc, O0 = E′
Kc

(D2) , and also the D′
2 is decrypted

two round using Kd, O′
0 = E′

Kd
(D′2). To knowing the value of α, an XOR operation

is performed between O0 with O′
0:

O0 = 1011 0000 0111 0100
= 1011 0101 1000 0100

...
= 0101 1111 1000 0011

O′
0 = 0100 0000 1000 0100

= 0100 0101 0111 0100
...

= 1000 1111 0111 1111

7. If P0 ⊕ P ′
0 = α = O0 ⊕ O′

0, A1 ⊕ A′
1 = β = B1 ⊕ B′

1, A1 ⊕ B1 = γ = A′
1 ⊕ B′

1, and
C2⊕D2 = δ = C ′

2⊕D′
2, then it can be categorized as correct related-key boomerang

quartet.
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Table 2: The correct quartets on Related-Key Boomerang Attack

No P0 P ′
0 O0 O′

0
1. 0000000000000000 1111000011110000 1011000001110100 0100000010000100
2. 0000000000010000 1111000011100000 1011010110000100 0100010101110100
· · · · · · · · · · · · · · ·
16. 0000000011110000 1111000000000000 1011111110000100 0100111101110100
17. 1010000000000000 0101000011110000 1101000001111101 0010000010001101
18. 1010000000010000 0101000011100000 1101010110001101 0010010101111101
· · · · · · · · · · · · · · ·
32. 1010000011110000 0101000000000000 1101111110001101 0010111101111101
33. 1110000000000000 0001000011110000 1001000001111101 0110000010001101
34. 1110000000010000 0001000011100000 1001010110001101 0110010101111101
· · · · · · · · · · · · · · ·
48. 1110000011110000 0001000000000000 1001111110001101 0110111101111101

In this study, pairs of P0, P ′
0, O0, danO′

0 were found in Table 2 which is the correct
related-key boomerang quartet because it satisfies the equation P0 ⊕ P ′

0 = α = O0 ⊕O′
0,

A1 ⊕ A′
1 = β = B1 ⊕ B′

1, A1 ⊕ B1 = γ = A′
1 ⊕ B′

1, and C2 ⊕D2 = δ = C ′
2 ⊕D′

2. This
study, for instance using P0 0000000000000000 and P ′

0 1111000011110000, the α value
obtained is 1111000011110000. Then, calculating the value A1 0001000100010001 and A′

1
1110111000010001 with the β value 1111111100000000. Next, calculating the value C2
1110000111100001 and C ′

2 0101000111100101, with the δ value 1111000000000000, calculat-
ing the value D2 0001000111100001 and D′

2 1010000111100101. After that, calculating the
value B1 0010001001000010 and B′

1 1101110101000010 yields the γ value 0011001101010011.
Finally, calculating the value O0 1011000001110100 and O′

0 0100000010000100, and ensur-
ing that the α value equals 1111000011110000. Using 28 plaintext pairs, we had succesfully
obtained 48 correct quartet pairs with probability Prc

= p · p̃ · q̃2 = 2−4 · 2−4 · 2−4 = 212.
Because every chosen plaintext is generated arbitrarily but has differences in byte positions
0 and 2, then it will produce a correct related key boomerang quartet. The greater the
probability, the easier it is to attack an algorithm. The correct related-key boomerang
distinguishers found can be used to recover the key using the steps that are already
mentioned in the section 2.

4 Conclusion

In this research as mentioned above, the related-key boomerang attack on mini-AES is
conducted under scenario of differential (α, β) = (1111 0000 1111 0000, 1111 1111 0000
0000) and (δ, γ) = (1111 0000 0000 0000, 0011 0011 1000 0001) with probability p =
24 and q = 24 respectively. Using 28 plaintext pairs, the attack succesfully delivered 48
correct quarted pairs with the total probability of 212. It is suggested that for validation
purposes, key recovery should be performed using one of the distinguishers that has already
been identified. This attack reveals a security hole in Mini-AES and provides important
insights into vulnerabilities in similar cryptographic systems. Through in-depth analysis,
this attack provides a better understanding of the complexity of Mini-AES security and
its relevance in the context of related-key attacks. As a result, a valuable contribution is
made by this research in strengthening the understanding of the security of cryptographic
systems and emphasizing the importance of protection against key-related vulnerabilities
in encryption algorithms.
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Abstract. This paper evaluates the security of the PRESENT and D-PRESENT block
ciphers using Multilayer Perceptrons (MLPs) Neural Networks for known plaintext
attacks. We analyzed three neural network architectures—64-128-128-64, 128-256-256-
128, and 256-512-512-256—finding that the 256-512-512-256 configuration provided
the best performance for both ciphers. The optimal Mean Squared Error (MSE)
was 0.238141032 and 0.238146656, respectively. The Test Error was 0.48802551 for
PRESENT and 0.48810985 for D-PRESENT, indicating that both ciphers exhibit
strong resistance to cryptanalysis. This study highlights the use of neural networks in
evaluating cryptographic algorithms and confirms the robustness of both PRESENT
and D-PRESENT against advanced analytical techniques.
Keywords: Cryptanalysis · PRESENT · D-PRESENT · Neural Networks · Mean
Squared Error · Test Error

1 Introduction
Cryptanalysis involves examining and breaking cryptographic systems to identify weak-
nesses or vulnerabilities. The process of identifying weaknesses in cryptographic algorithms
and utilizing them to decipher ciphertext without the secret key has evolved from the
inception of Differential cryptanalysis, the earliest general cryptanalytic method, to var-
ious techniques such as linear cryptanalysis and integral analysis. Multiple research
endeavors [1,2,3,4,5,6] have provided evidence of successful cryptanalysis on block ciphers.
Nonetheless, as indicated by [7], these traditional cryptanalytic approaches may have
practical limitations or constraints on their applicability. Typically, conventional cryptana-
lytic methodologies demand considerable time, access to known plaintexts, and memory
resources. Moreover, while traditional cryptanalysis is generally conducted without re-
strictions on the keyspace, recent block ciphers have only been vulnerable to attacks on
reduced-round variants [7].
Recent advancements in machine learning (ML), particularly Neural Networks, have in-
troduced new paradigms in cryptanalysis. Neural Networks have proven to be highly
effective in enhancing cryptanalysis performance, as evidenced by several studies. [8]
showed that neural networks could identify patterns and potential weaknesses in the
key scheduling algorithms of block ciphers, providing insights into their security. In [9],
a deep learning-based model was developed to predict block cipher keys from known
plaintext-ciphertext pairs, with successful applications to lightweight block ciphers such as
Simon, Speck, and simplified DES. It was found that deep learning-based cryptanalysis
could recover key bits when the key space was limited to 64 ASCII characters. Likewise,
[10] utilized neural networks to effectively perform differential cryptanalysis on the Speck
cipher, achieving remarkable success rates compared to traditional methods. Similarly, [11]
explored the application of deep learning techniques to break various modes of operation of
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the Advanced Encryption Standard (AES). The research demonstrated that deep learning
models could effectively identify weaknesses and patterns in the encrypted data, thus
allowing the decryption of ciphertext without knowing the secret key.
Furthermore, [12] explores the use of neural networks in cryptography, specifically focusing
on analyzing block ciphers using statistical methods. The Inception V3 neural network
model, typically used for image identification, was repurposed to differentiate ciphertexts
of block ciphers. Results indicated that neural networks can effectively address challenges
in analyzing statistical properties. In [13], two experiments aimed to recover the master
key bit by bit of PRESENT. Both techniques, employing a 3-depth Fully Connected Neural
Network and a residual neural network, demonstrated high accuracy in predicting the
security key of PRESENT. However, [14] examined the security of the key scheduling
algorithm (KSA) in the 80-bit key variant of PRESENT by employing deep learning
techniques to attempt the extraction of the main key register from the final round key
register. The results indicated that the KSA of PRESENT offers strong security. Similarly,
[15] examined the KSA of AES and PRESENT using a deep learning model to identify
patterns and weaknesses in these block ciphers. The results indicated that only half of
the final round key bits could be accurately predicted, suggesting that these KSAs are
effective at resisting certain types of deep learning analysis.
D-PRESENT is a modified version of PRESENT, designed to enhance security by in-
corporating a dynamic, key-dependent S-box. While the original PRESENT cipher is
well-known for its simplicity and efficiency, utilizing a static S-box across all encryption
rounds, D-PRESENT introduces variability by altering the S-box based on the round key
for every encryption round. This dynamic modification makes the S-box in D-PRESENT
dependent on the specific key used, adding an extra layer of complexity and making
cryptanalysis more challenging. Additionally, while D-PRESENT retains the same bit
permutation layer (pLayer) as PRESENT, the key-dependent S-box distinguishes it by
introducing non-linearity that adapts with each encryption, thereby enhancing resistance
to certain types of attacks.
Building on the strengths of PRESENT, D-PRESENT has been introduced as an improved
variant, offering enhancements in the avalanche effect, execution time, and throughput
[16]. The avalanche effect guarantees that even a minor alteration in the plaintext or
key results in a significantly different ciphertext, thereby strengthening security. Im-
proved execution time and throughput make D-PRESENT more efficient and suitable
for resource-constrained environments. These pioneering efforts illustrate the potential of
neural network-based approaches to enhance the cryptanalysis of lightweight ciphers. While
much of the research focuses on recovering secret keys to decrypt ciphertext generated
by block ciphers like PRESENT, this study aims to decrypt ciphertext into plaintext
using known ciphertext-plaintext datasets without the need to recover the secret key. It
employs Multilayer Perceptron (MLPs) or feedforward neural networks to evaluate the
security robustness of PRESENT and D-PRESENT by assessing their performance based
on metrics such as Mean Squared Error (MSE) and Test Error (TE).
The results of this study offer valuable insights into the robustness of the PRESENT and
D-PRESENT block ciphers when subjected to neural network-based cryptanalysis. The
performance of both ciphers to known plaintext attacks suggests their security strength
even when modern machine learning techniques are employed. The result is particularly
relevant for applications in resource-constrained environments where lightweight ciphers
are preferred, such as in IoT devices and embedded systems. Moreover, the use of neural
networks in assessing cipher security can serve as an additional layer of analysis, comple-
menting traditional methods like differential and linear cryptanalysis. As neural networks
continue to evolve, understanding their strengths and limitations in cryptographic analysis
will be crucial for designing future ciphers that are secure against a broader range of attack
vectors.
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Table 1: Experimental Equipment

OS Version Windows 10 Pro 22H2
Processor 11th Gen Intel® Core™ i7-11700 @2.5 Ghz

RAM 8.00 Gb
Graphics Card Intel® UHD Graphics 750

The rest of this paper is structured as follows: Section 2 outlines the methodology used in
this research. Section 3 presents the experimental results. Section 4 presents the analysis.
Finally, Section 5 concludes the paper with insights and future research directions.

2 Methods of Experimentation

2.1 Experimental Environment
The experiments were conducted using MATLAB R2023b. Table 1 displays the equipment
utilized for the experiments. The choice of hardware was guided by practical constraints
in research settings. The results obtained are still relevant for understanding the baseline
performance and potential of the approach.

2.2 Datasets
The experiment utilized 5,000 pairs of known 64-bit ciphertext and plaintext datasets for
training the neural network, along with 100 pairs for testing the model’s actual performance.
This sample size provides a balance between demonstrating the technique’s capabilities and
managing computational resources. The goal of the research to demonstrate the feasibility
of an attack can still be achieved.

2.3 Parameters
The parameters of the neural network were set as follows:

2.3.1 Hidden Layers

The neural network was trained with three different hidden layer configurations: 64-128-
128-256, 128-256-256-128, and 256-512-512-256, as recommended in [16]. Figure 1 shows
the sample network setting of the experimentation.

2.3.2 Training Function

The training function employed was the quantized conjugate gradient method, ’trainscg’,
suitable for large networks [17].

2.3.3 Error Function

The error function utilized for training was the mean squared error (MSE), which is
commonly applied in regression tasks, such as restoring plaintext from known ciphertext.
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Figure 1: Experimental training network.

2.4 Training Stop Conditions
The maximum number of training cycles was set to 500, with three stop conditions: (1)
reaching 500 training cycles, (2) achieving an acceptable mean square error limit of 0.05,
and (3) experiencing continuous validation failures, with a maximum limit of 20 failures.

2.5 Training Phase
The collected dataset was divided into training samples (70%), validation samples (15%),
and testing samples (15%). Training samples were used to adjust the connection weights of
the network based on error. The same dataset was used to train the network with different
hidden layer configurations, and multiple training trials were conducted to identify the
best performance.

2.6 Test Error Phase
After determining the best performance of the network with the three different layer
settings, the lowest MSE was selected to assess the network’s capability to successfully
attack the block cipher. The ciphertext different from the training set was input into the
neural network, generating the corresponding result P ′

test. Results with values less than
0.5 were interpreted as bit 0, otherwise as bit 1. The P ′

test and the plaintext Ptest sets were
XORed bit by bit, and the error percentage was calculated as the test error, expressed by
the following formula:

test_error =
∑mtest

i=1
∑ntest

j=1 p′
test(i, j) ⊕ ptest(i, j)

mtest × ntest
(1)
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Table 2: Performance result for PRESENT.

Hidden Layers Performance (MSE) Epoch Elapsed Time
64-128-128-64 0.240078647 133 10 s

128-256-256-128 0.238811549 173 25 s
256-512-512-256 0.238141032 100 40 s

Table 3: Performance result for D-PRESENT.

Hidden Layers Performance (MSE) Epoch Elapsed Time
64-128-128-64 0.24021601 136 16 s

128-256-256-128 0.238822611 182 28 s
256-512-512-256 0.238146656 98 43 s

where
mtest is the number of bits per block in the test set,
ntest is the number of blocks in the test set,
P ′

test (i,j) is the jth bit in the ith block of the output during the test, and
Ptest (i,j) is the jth bit in the ith block of the plaintext used in the test.

3 Results
After carrying out experimentation on PRESENT and D-PRESENT block ciphers, the
following results were recorded.

3.1 Mean Squared Error (MSE)
The mean squared error (MSE) is a measure used to evaluate the accuracy of a predictive
model. It is calculated as the average of the squared differences between the actual values
and the predicted values. There is no correct value for MSE, however, the lower the value
the better.

Table 2 presents the MSE values for the PRESENT block cipher under a known
plaintext attack using a neural network. The results show that the network achieves its
best performance with a configuration of 256-512-512-256 hidden layers, recording an MSE
of 0.238141032. As observed, increasing the number of neurons in each layer generally
leads to a reduction in MSE.

Table 3 displays the MSE values for the D-PRESENT block cipher. Similar to
PRESENT, the optimal performance is achieved with the 256-512-512-256 hidden layers
configuration, with an MSE of 0.238146656. Again, a trend is observed where increasing
the number of neurons in each layer results in a lower MSE.

3.2 Test Error
Test error quantifies the real-world performance of a neural network when it encounters
new data that was not part of its training set. It assesses the discrepancy between the
predicted output (P ′

test ) and the actual output (Ptest ) when the network is presented
with unseen ciphertext. Essentially, test error measures the number of errors that the
network fails to predict accurately during inference.
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Table 4: Test Error Result.

Hidden Layers PRESENT D-PRESENT
64-128-128-64 0.49348485 0.48516414

128-256-256-128 0.49195076 0.48869318
256-512-512-256 0.48802551 0.48810985

Table 4 shows the test error results for both block ciphers. For both PRESENT and
D-PRESENT, the lowest test error is observed with the 256-512-512-256 hidden layers
configuration, recording values of 0.4880 and 0.4881, respectively. As with MSE, an
increase in the number of neurons tends to reduce the test error for both algorithms.

4 Discussion
The network’s optimal performance for both, PRESENT and D-PRESENT, was achieved
using a hidden layer configuration of 256-512-512-256, resulting in an MSE of 0.238141032
after 100 epochs and 40 seconds of elapsed time for PRESENT and an MSE of 0.238146656
after 98 epochs and 43 seconds of elapsed time for D-PRESENT. A clear trend was observed
for both block ciphers indicating that an increase in the number of neurons per layer
correlates with a decrease in MSE.
Thus, achieving the best network performance necessitates additional elapsed time. In
addition, the lowest test error was observed with the 256-512-512-256 hidden layer configu-
ration, yielding a test error of 0.48810985 for PRESENT and 0.48810985 for D-PRESENT.
It was further noted that as the number of neurons in each layer increased, the test error
correspondingly decreased.
The results from our experimentation indicate that PRESENT and D-PRESENT block
ciphers exhibit robust security against known plaintext attacks when assessed using neural
networks, specifically Multilayer Perceptrons. This robustness is evidenced by the rela-
tively low Mean Squared Error (MSE) and Test Error (TE) across different neural network
configurations. These findings highlight the potential of PRESENT and D-PRESENT
as a secure option in applications requiring lightweight cryptography, particularly where
conventional cryptanalytic attacks might be mitigated but machine learning-based attacks
pose a new threat.
The practical implications of our findings are twofold. Firstly, they affirm the security of
both PRESENT and D-PRESENT in protecting sensitive information within constrained
environments, such as IoT devices. Secondly, the use of neural networks in cryptanalysis
provides a new dimension of evaluation, helping cryptographers understand and reinforce
the strengths and weaknesses of their algorithms against both traditional and modern
attack vectors.

5 Conclusion
This research aimed to assess the security resilience of PRESENT and D-PRESENT
against known plaintext attacks using a Multilayer Perceptron neural network. The results
indicate that while there is a slight decrease in mean squared error and test error with an
increase in the number of neurons in each layer, this decrease is marginal and does not
hold significant practical implications. Moreover, as the number of neurons increases, there
is a notable increase in the time required to train the network. Consequently, developing a
more accurate predictive neural network model necessitates longer training durations and
higher computing resources in terms of speed and memory.
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Nevertheless, the findings affirm that both block ciphers exhibit robust security against
known plaintext attacks conducted using neural networks. This study supports previous
research indicating that the PRESENT block cipher stands up well against deep learning-
based analyses [14,15].

Recommendation
While the current study used Multilayer Perceptrons (MLPs), experimenting with other
architectures like Convolutional Neural Networks (CNNs) or Recurrent Neural Networks
(RNNs) could provide deeper insights into the cryptanalysis process. These architectures
might capture more complex patterns in the data.

Moreover, an increase in the number of datasets and upgrading of computer resources,
like RAM and Processor, may also provide insightful results.
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Abstract. This article presents the block cipher Durian, a general-purpose block
cipher suitable for implementation across a wide range of platforms. Durian belongs
to the class of reflection ciphers, characterised by identical encryption and decryption
algorithms except for the processing of the round subkeys. Unlike traditional Feistel-
based ciphers, reflection ciphers feature an involutive component in the middle of the
cipher. In addition to describing the specification of Durian, this article also provides
an in-depth analysis of its security and performance, along with the rationale behind
its design choices.
Keywords: Block cipher · Reflection ciphers · Generalized Feistel Network ·
Symmetric cryptography

1 Introduction
Block ciphers are the workhorses of cryptography. They can be utilised to build other
cryptographic primitives. If used in modes such as Counter (CTR), it can be used to
build stream ciphers. In the Miyaguchi-Preneel construction, it can be realised as hash
functions. Plug the block cipher into the CBC-MAC construction, and we will get a
message authenticated code (MAC). Similarly, using the block cipher in Galois counter
mode (CGM), we will get an authenticated encryption scheme. As the Advanced Encryption
Standard (AES) [21] already is a fairly good block cipher, exploring other alternatives is
still viable, as these may offer unique advantages compared to the AES.

Block ciphers like AES do not have identical encryption and decryption algorithms.
For example, the matrix used in the MixColumns component for encryption differs from
the matrix used in its inverse for decryption. Consequently, when AES is used in modes
such as cipher block chaining (CBC) and OCB3 [31], both AES encryption and decryption
algorithms are respectively required to perform mode-level encryption and decryption. In
contrast, reflection block ciphers [16], with identical encryption and decryption algorithms,
can use the same algorithm for both mode-level encryption and decryption. This approach
saves area in resource-constrained environments and simplifies the construction logic by
eliminating the need to select between block cipher encryption and decryption algorithms.

Reflection block ciphers are a subset of involutional block ciphers, like Noekeon [20],
Anubis [2], and Khazad [3], which use involutive components (e.g. S-box) in their con-
struction. The Data Encryption Standard (DES) [35] is also involutive due to its use of
the standard Feistel network. The lightweight block cipher PRINCE [15] and PRINCE
v2 [17] achieve the involutive property by incorporating an involutive component in the
middle and ensuring the second half of the cipher is the inverse of the first half. These
ciphers, known as reflection ciphers [16], have encryption functions identical to decryption
functions. Beyne and Chen further provided a provable security treatment of these ciphers,
reinforcing the robustness of this construction [4].

This article introduces the Durian block cipher, which is a type of reflection block
ciphers by PRINCE. It accepts a 128-bit plaintext block and master key lengths of 128,
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192 or 256 bits. These variants are denoted as Durian-128, Durian-192 and Durian-256,
respectively. The secret key is used as input to the key scheduling algorithm to produce
a set of whitening and round subkeys. These key materials are used by the encryption
and decryption algorithms to process the input block. The number of rounds is 16 for
Durian-128, 20 for Durian-192 and 24 for Durian-256. The encryption and decryption
algorithms employ a slightly modified Type-2 generalized Feistel network (GFN). With
the introduction of the I function, the modification allows the use of the same algorithm
to perform both encryption and decryption in the 4-branch setting. Traditional 4-branch
Type-2 GFN uses two distinct algorithms.

This article is organized as follows. Section 2 describes how Durian performs encryption
and decryption while Section 3 explains how it processes the secret key. Section 4 contains
a security analysis of the cipher. The design rationale is presented in Section 5. An efficient
Durian implementation strategy is described in Section 6 while the performance figures for
software and hardware are provided in Section 7.

2 Processing the Plaintext Block
This section describes how the 128-bit input block is processed by Durian during encryption
and decryption. The plaintext block p̆ = p̆0∥p̆1∥p̆2∥p̆3 and the ciphertext block c̆ =
c̆0∥c̆1∥c̆2∥c̆3 consist of the concatenation of four 32-bit words p̆i and c̆i, respectively. The
32-bit whitening keys wki and the round subkeys rki are produced by the key scheduling
algorithm described in Section 3. Let R̆ ∈ {16, 20, 24} denote the number of rounds in
Durian and r̆ = R̆/2 denote the number of half rounds.

2.1 Encryption
Given the plaintext block p̆ = p̆0∥p̆1∥p̆2∥p̆3, whitening keys wki and round subkeys rkj as
inputs, encryption proceeds as follows:

1. Set the input block and key materials as follows:

t̆i = p̆i for i = 0, 1, . . . , 3,

w̆ki = wki for i = 0, 1, . . . , 7,

r̆ki = rki for i = 0, 1, . . . , 2R̆ − 1.

2. XOR the input block with the pre-whitening key (w̆k0, w̆k1, w̆k2, w̆k3):

x̆0 = t̆0 ⊕ w̆k0, x̆1 = t̆1 ⊕ w̆k1,

x̆2 = t̆2 ⊕ w̆k2, x̆3 = t̆3 ⊕ w̆k3.

3. Apply the following equations for i = 1, 2, . . . , r̆:

x̆4i = F (r̆k2i−2, x̆4i−4) ⊕ x̆4i−3, x̆4i+1 = x̆4i−2,

x̆4i+2 = F (r̆k2i−1, x̆4i−2) ⊕ x̆4i−1, x̆4i+3 = x̆4i−4

where F is a bijective function defined in Section 2.3.1.

4. Apply the I function to the current value of the state (note the order of the input
words)

y̆4r̆∥y̆4r̆+1∥y̆4r̆+2∥y̆4r̆+3 = I(x̆4r̆+3∥x̆4r̆∥x̆4r̆+1∥x̆4r̆+2)

where I is an involutive function defined in Section 2.3.4.
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5. Apply the following equations for i = r̆ + 1, r̆ + 2, . . . , R̆:

y̆4i = F (r̆k2i−1, y̆4i−2) ⊕ y̆4i−1, y̆4i+1 = y̆4i−4,

y̆4i+2 = F (r̆k2i−2, y̆4i−4) ⊕ y̆4i−3, y̆4i+3 = y̆4i−2.

6. XOR the state with the post-whitening keys (w̆k4, w̆k5, w̆k6, w̆k7) and output:

t̆4 = y̆4R̆+1 ⊕ w̆k4, t̆5 = y̆4R̆+2 ⊕ w̆k5,

t̆6 = y̆4R̆+3 ⊕ w̆k6, t̆7 = y̆4R̆ ⊕ w̆k7.

7. Output the ciphertext block as

c̆0 = t̆4, c̆1 = t̆5, c̆2 = t̆6, c̆3 = t̆7.

The encryption for Durian is depicted in Figure 1(a) (note that the pre- and post-whitening
keys are not shown). A high-level description of the cipher and its components are given
in Listing 1 and Listing 2, respectively.

2.2 Decryption
Given the ciphertext block c̆ = c̆0∥c̆1∥c̆2∥c̆3, whitening keys wki and round subkeys rkj as
inputs, decryption is identical to encryption except for the order of the round subkeys. To
decrypt, the following values are used

t̆i = c̆i for i = 0, 1, . . . , 3,

w̆ki = wki+4 for i = 0, 1, . . . , 3,

w̆ki = wki−4 for i = 4, 5, . . . , 7,

r̆ki = rk2R̆−i−2 for i = 0, 2, 4, . . . , 2R̆ − 2,

r̆ki = rk2R̆−i for i = 1, 3, 5, . . . , 2R̆ − 1.

Then, apply Steps 2 to 6 of the encryption procedure described in the previous section
and output the plaintext block as

p̆0 = t̆4, p̆1 = t̆5, p̆2 = t̆6, p̆3 = t̆7.

The decryption for Durian is depicted in Figure 1(a) (note that the pre- and post-whitening
keys are not shown). The order of the whitening and round subkeys for decryption have
to be amended accordingly to fit the high-level description of Listing 1.

2.3 Components
This section explains the components used in the encryption and decryption algorithms of
Durian.

2.3.1 The F Function

The F function accepts two 32-bit inputs: a round subkey1 k and a state word w. It
produces a 32-bit output z and consists of a nonlinear transformation S and a linear
transformation P as follows

z = F (k, w) = P (S(k ⊕ w)).

The F function is depicted in Figure 1(b) where k = k0∥k1∥k2∥k3 and w = w0∥w1∥w2∥w3
are treated as the concatenation of four 8-bit words ki and wi, respectively.

1For simplicity, the notation k here is used in the generic sense to represent rki and r̆ki stated in
Section 2.1 and Figure 1(a).
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Figure 1: Components of Durian

2.3.2 The S Function

The S function is a nonlinear transformation that accepts a 32-bit word x = x0∥x1∥x2∥x3
as input which consists of a sequence of four 8-bit words xi. The application of S to x
comprises the application of a single 8 × 8 S-box s to xi four times in parallel to produce a
32-bit output y. The S function is denoted as

y = y0∥y1∥y2∥y3 = S(x) = s(x0)∥s(x1)∥s(x2)∥s(x3).

The mapping for the 8 × 8 S-box s is given in Table 1. The left-most column denotes the
first four bits and the top-most row denotes the subsequent four bits of the 8-bit input
of the S-box. For instance, for input 12 (in hexadecimal) to the S-box s, the output is
s(12) = A4.

2.3.3 The P Function

The linear P function accepts a 32-bit word y = y0∥y1∥y2∥y3 as input which consists of
four 8-bit words yi. The P function comprises the application of a 4×4 Maximum Distance
Separable (MDS) matrix M to y to produce a 32-bit output word z = z0∥z1∥z2∥z3. The
MDS matrix M is:

M =




02 03 01 01
01 02 03 01
01 01 02 03
03 01 01 02


 .

The application of P to y is denoted by

z = P (y)
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Table 1: The S-box table of Durian

0 1 2 3 4 5 6 7 8 9 A B C D E F

0 2D 1C 65 E8 2C 8F 8D 29 E0 F8 02 B0 A1 36 5C 8B
1 4A 7C A4 14 A3 23 5F 37 41 80 AD 5E 59 DC 89 68
2 58 1A F5 F9 FD 2F A2 31 E2 BB 38 95 CD 00 9A C6
3 0B B3 DA 3C 0D 26 FA DE E5 99 83 B4 2A A5 57 BF
4 D2 C2 4D F3 DF C1 93 54 18 AF 74 24 D5 2B B2 C3
5 E9 85 0C FB 42 70 4F E1 9D B8 D7 7F 97 3B CE E6
6 53 33 CB 96 AB F0 C9 43 7B E7 84 C4 07 06 20 86
7 F6 A7 03 56 4E CF D4 0F C8 34 CA 35 0A 1D 87 19
8 6C B1 45 A6 47 01 F7 46 17 04 D1 BE 67 10 9E F4
9 EE 9C AE DD 32 E3 27 40 73 1E FF 15 FC ED 72 C7
A BA C0 66 6E 4C 3A 30 48 9F 6B B9 BD E4 F1 7D 90
B 88 EB 98 8E D0 22 61 7E EC A9 D6 91 09 2E 62 8C
C 81 08 11 50 B5 B7 DB 7A 25 6A 63 8A 16 5B A8 77
D EA FE 55 76 51 78 6D 71 1F 60 28 13 AC 6F F2 5D
E 4B 3F 69 BC 94 5A 3D A0 D3 B6 3E 12 44 1B D8 92
F 21 75 0E CC 82 79 39 49 64 EF 52 AA C5 9B D9 05

and can be written as

z0 = 02 · y0 ⊕ 03 · y1 ⊕ 01 · y2 ⊕ 01 · y3,

z1 = 01 · y0 ⊕ 02 · y1 ⊕ 03 · y2 ⊕ 01 · y3,

z2 = 01 · y0 ⊕ 01 · y1 ⊕ 02 · y2 ⊕ 03 · y3,

z3 = 03 · y0 ⊕ 01 · y1 ⊕ 01 · y2 ⊕ 02 · y3,

where byte multiplications are performed in GF(28) defined by the primitive polynomial
z8 + z4 + z3 + z + 1.

2.3.4 The I Function

The I function accepts a 128-bit word x = x0∥x1∥x2∥x3 as input which consists of the
concatenation of four 32-bit words xi. The I function comprises the application of a byte
permutation, followed by an MDS layer and then the same byte permutation. The MDS
layer consists of a single 4 × 4 involutive MDS matrix M ′ which is applied to the input four
times in parallel. The output of the I function is a 128-bit output word y = y0∥y1∥y2∥y3.
The MDS matrix M ′ is provided below.

M ′ =




01 08 02 0A
08 01 0A 02
02 0A 01 08
0A 02 08 01


 .

The application of I to x is denoted by

y0∥y1∥y2∥y3 = I(x0∥x1∥x2∥x3).

Let xi = xi,0∥xi,1∥xi,2∥xi,3 and yi = yi,0∥yi,1∥yi,2∥yi,3 be further broken into sequences
of four 8-bit words xi,j and yi,j , respectively. The application of the I function can be
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written as follows for j = 0, 1, . . . , 3

y0,j = 01 · x0,j ⊕ 08 · x1,j ⊕ 02 · x2,j ⊕ 0A · x3,j ,

y1,j = 08 · x0,j ⊕ 01 · x1,j ⊕ 0A · x2,j ⊕ 02 · x3,j ,

y2,j = 02 · x0,j ⊕ 0A · x1,j ⊕ 01 · x2,j ⊕ 08 · x3,j ,

y3,j = 0A · x0,j ⊕ 02 · x1,j ⊕ 08 · x2,j ⊕ 01 · x3,j ,

where byte multiplications are performed in GF(28) defined by the primitive polynomial
z8 + z4 + z3 + z2 + 1. As can be carefully observed, each matrix takes one byte from each
branch as input, which is clearly depicted in Figure 1(c). The output of I can be written
as

y0,0∥ . . . ∥y0,3∥y1,0∥ . . . ∥y3,3 = I(x0,0∥ . . . ∥x0,3∥x1,0∥ . . . ∥x3,3).

Listing 1: A high-level description of Durian
1 Durian (state , masterkey ) {
2 KeySchedule (masterkey , whiteningkey , roundsubkey );
3

4 // XOR with pre - whitening keys
5 for (j=0; j <4; j++) state [j] = state [j]^ whiteningkey [j];
6

7 for (i=1; i <=r; i++) RoundA (state , roundsubkey , i);
8

9 I( state );
10

11 for (i=r+1; i <=R; i++) RoundB (state , roundsubkey , i);
12

13 // XOR with post - whitening keys
14 for (j=0; j <4; j++) state [j] = state [j]^ whiteningkey [j+4];
15 }

Listing 2: Durian components
1 RoundA (state , roundsubkey , i) {
2 x[0] = F( roundsubkey [2*i -2] , state [0])^ state [1];
3 x[1] = state [2];
4 x[2] = F( roundsubkey [2*i -1] , state [2])^ state [3];
5 x[3] = state [0];
6

7 if (i < r) {
8 for (j=0; j <4; j++) state [j] = x[j];
9 }

10 else {
11 for (j=0; j <4; j++) state [j] = x[(j+3) % 4];
12 }
13 }
14

15 RoundB (state , roundsubkey , i) {
16 x[0] = F( roundsubkey [2*i -1] , state [2])^ state [3];
17 x[1] = state [0];
18 x[2] = F( roundsubkey [2*i -2] , state [0])^ state [1];
19 x[3] = state [2];
20

21 if (i < R) {
22 for (j=0; j <4; j++) state [j] = x[j];
23 }
24 else {
25 for (j=0; j <4; j++) state [j] = x[(j+1) % 4];
26 }
27 }
28

29 F(subkey , x) {
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30 x = x^ subkey ;
31 x = S(x);
32 x = P(x);
33 }

3 Processing the Secret Key Block
The lengths of acceptable master key k̆ = k̆0∥k̆1∥ . . . ∥k̆(|k̆|/32)−1 are 128, 192 or 256 bits
for Durian-128, Durian-192 and Durian-256, respectively. The key schedule produces a
set of eight 32-bit whitening keys wki and 2R̆ 32-bit round subkeys rki. These keys are
produced as follows and the algorithm is given in pseudocode form in Listing 3.

1. If the length of the master key is less than 256 bits, then pad the rightmost bit with
bit ‘1’, followed by as many bit ‘0’ until the length is 256 bits. If the master key is
already 256 bits, then use the master key as it is. Let this 256-bit value be denoted
by mk = mk0∥mk1∥ . . . ∥mk7 which consists of a sequence of eight 32-bit words mki.
As an example, for Durian-128, mki = k̆i for i = 0, 1, . . . , 3, mk4 = 80000000 and
mki = 0 for i = 5, 6, 7.

2. Initialize two 32-bit round subkey constants rc0, rc1 which are given in Table 2. The
values are unique for different variants of Durian.

3. Setup an array of 32-bit registers ti where the master key words are used as the
initial values as follows

ti−8 = mki

for i = 0, 1, . . . , 7.

4. The registers are then updated using the following relation, where its maximum
iteration is related to the number of rounds, i.e. i = 0, 1, . . . , 2R̆ + 19:

ti =
{

S((ti−8 ⊕ ti−6 ⊕ ti−5 ⊕ ti−1 ⊕ rc0 ⊕ i) ≪ 11) if i mod 4 = 0,
(ti−8 ⊕ ti−6 ⊕ ti−5 ⊕ ti−1 ⊕ rc1) ≪ 7 otherwise.

5. The round subkeys are derived as follows which starts at t12.

(a) The first part of the whitening keys are:

wki = ti+12

for i = 0, 1, . . . , 3.
(b) The round subkeys are:

rki = ti+16

for i = 0, 1, . . . , 2R̆ − 1.
(c) The second part of the whitening keys are:

wki+4 = ti+16+2R̆

for i = 0, 1, . . . , 3.

The complete equations for the registers ti are given in the full version of this article.
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Table 2: Round subkey constants

Key length (in bits) rc0 rc1

128 517CC1B7 27220A94
192 2066EFA6 0C4794C2
256 A62066EF C20C4794

The round subkey constants for Durian-192 and Durian-256 can be derived from Durian-
128 as follows:

rc0 = S(517CC1B7 ≫ 7), rc1 = S(27220A94 ≫ 11) for Durian − 192,

rc0 = S(517CC1B7 ≫ 15), rc1 = S(27220A94 ≫ 19) for Durian − 256.

Listing 3: The key scheduling algorithm
1 KeySchedule (masterkey , whiteningkey , roundsubkey ) {
2 pad( masterkey ); // pad the key if necessary
3

4 for (i=0; i <8; i++) t[i -8] = masterkey [i];
5

6 for (i=0; i <2*R+20; i++) {
7 if ((i % 4) == 0)
8 t[i] = S((t[i -8]^t[i -6]^t[i -5]^t[i -1]^ rc0^i) <<< 11);
9 else

10 t[i] = (t[i -8]^t[i -6]^t[i -5]^t[i -1]^ rc1) <<< 7;
11 }
12

13 // 1st part of the whitening keys
14 for (i=0; i <4; i++) whiteningkey [i] = t[i +12];
15

16 // round subkeys
17 for (i=0; i <2*R; i++) roundsubkey [i] = t[i +16];
18

19 // 2nd part of the whitening keys
20 for (i=0; i <4; i++) whiteningkey [i+4] = t[i +16+2* R];
21 }

4 Cryptanalysis
This section analyses the block cipher Durian against existing cryptanalytic attacks.

4.1 Preliminaries
Most of the attacks presented in this section is applicable to round-reduced versions of
Durian. For instance, if an attack is applicable to 7 rounds of Durian-128, then the attack
is not applicable to the full 16 rounds of Durian-128. Although the attack is theoretical, it
is accepted in the cryptographic literature.

4.2 Differential and Linear Cryptanalysis
Differential cryptanalysis [7, 8] is a chosen plaintext attack that exploits the existence
of a linear relationship between the encryption of two plaintexts using the same secret
master key. Given a pair of inputs to a block cipher with a certain input difference, the
output difference after some number of rounds can be predicted with high probability.
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The expected difference at this round is used in a key recovery attack to identify possible
subkey bits.

Linear cryptanalysis is a known plaintext attack introduced by Matsui in 1993 [33]. In
a basic linear attack, a one-bit linear relationship between selected bits of the input, output
and master key of the block cipher is constructed which is valid with high probability.
These relations are used in a key recovery attack to identify possible subkey bits.

In order to prove the resistance of Durian against differential and linear cryptanalysis,
we adopted the number of active S-boxes approach. This approach was also used to
evaluate the security of the AES against these attacks [21, Section 9]. As mentioned by
Bogdanov and Shibutani [14], since differential and linear cryptanalysis are closely related,
it is assumed that the resistance of Durian against these attacks using the number of active
S-boxes approach is the same.

The method to count the number of active S-boxes used here is based on the propagation
of difference weights, as used in Shirai and Shibutani [40]. Recall that the F function used
in Durian is the same in all rounds and hence, difference cancellations may occur in the
difference propagation. This is explained as follows. Let x = x0||x1|| . . . ||xm−1 compose of
the concatenation of m n-bit words. The Hamming weight hw(x) is defined as

hw(x) = #{i | 0 ≤ i ≤ (m − 1), xi ̸= 0}.

In order words, the Hamming weight of x is the number of non-zero n-bit words in x.
Let ∆w2i−2 , ∆z2i−2 and ∆w2i−1 , ∆z2i−1 denote the pair of input and output differences

of the two F functions in round i where 1 ≤ i ≤ R̆. The input difference to the F function
in the fourth round is cancelled if the input difference to specific F functions in the first
and third rounds are the same. Specifically,

hw(∆w2i+4) = 0

if hw(∆w2i+2) = hw(∆w2i−1) and hw(∆w2i+1) − hw(∆z2i−1) = 0. This 3-round difference
cancellation is depicted in Figure 2. The same difference cancellation also occurs for
∆w2i+3 .

hw(∆w2i−1 ) = α 0

hw(∆z2i−1) = β

F F

hw(∆w2i+1) = β

F F

hw(∆w2i+2) = α

hw(∆w2i+4) = 0

F F

Figure 2: A 3-round difference cancellation

Let (∆x̆4(i−1) , ∆x̆4(i−1)+2) and (∆y̆4(j−1) , ∆y̆4(j−1)+2) denote the input differences to the
F function in rounds i = 1, 2, . . . , r and j = r + 1, r + 2, . . . , R, respectively. Furthermore,
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∆x̆i
= (∆x̆i,0 , ∆x̆i,1 , ∆x̆i,2 , ∆x̆i,3) and ∆y̆i

= (∆y̆i,0 , ∆y̆i,1 , ∆y̆i,2 , ∆y̆i,3) consist of the con-
catenation of four 8-bit words ∆x̆i,j

and ∆y̆i,j
, respectively where r = R/2. Therefore

the Hamming weights hw(∆x̆i
) and hw(∆y̆i

) do not exceed 4, i.e. 0 ≤ hw(∆x̆i
) ≤ 4 and

0 ≤ hw(∆y̆i) ≤ 4. The minimum number of active S-boxes for an R-round Durian is
counted using the following formulae:

min
{

r−1∑

i=0

(
hw(∆x̆4i) + hw(∆x̆4i+2)

)
+

R−1∑

i=r

(
hw(∆y̆4i) + hw(∆y̆4i+2)

)
}

.

Table 3 compares the minimum number of differentially active S-boxes between tra-
ditional 4-branch generalized Feistel network (GFN)2 denoted GFN4, CLEFIA (which
employs the Diffusion Switching Mechanism (DSM) technique [39, 41]), GFNSPS

4 which is a
GFN4 that uses a SPS F function [13, 14], and Durian. It can be seen that, after 7 rounds,
the number of differentially active S-boxes of Durian is superior to that of GFN4. It is also
comparable to the DSM technique used in CLEFIA which uses two distinct F -functions in
each round. Durian uses only a single F function.

For a block size of 128 bits, the number active S-boxes na needed for a cipher to be
secure against differential and linear cryptanalysis should satisfy

pna < 2−128

where p = DPmax = 2−5.4 for differential cryptanalysis and p = LPmax = 2−6 for linear
cryptanalysis. Therefore, na ≥ 24 for differential cryptanalysis and na ≥ 22 for linear
cryptanalysis. According to Table 3, the minimum number of rounds that is sufficient
to protect Durian against both attacks is 12. At 12 rounds, there are a minimum of 30
differentially active S-boxes. Since the smallest variant of this cipher has 16 rounds, we
believe that it provides ample protection against these two basic attacks.

In a related work, Knudsen [29] reported a 12-round iterative characteristic on an early
version of Durian without the I function. It is formed by iterating a 6-round characteristic
with probability p12 that has at least 12 active S-boxes. As stated previously, p = 2−5.4.
The 12-round characteristic thus has a probability of (2−5.4)24 ≈ 2130 which prohibits the
execution of the attack. Knudsen [29] added that the addition of the I function would
bring down this probability even further, though only slightly. This is in line with our
previous analysis that sets a minimum of 12 rounds for the cipher to be secure against
traditional differential cryptanalysis.

We have also analysed and argued the security of Durian against boomerang [44],
amplified boomerang [24], impossible differential [6], integral [28], algebraic [18, 19],
related-key [5, 27, 25, 26], biclique [11, 12], slide-based [9, 10] and known-key [30] attacks.
Due to length-limitation, these analyses are available at the full version of this article.

5 Design Rationale
This section describes the reasons behind the design choices for the block cipher Durian.

5.1 Block and Key Sizes
The block cipher Durian accepts a 128-bit plaintext block and key lengths of 128, 192
and 256 bits. These parameters are consistent with the Advanced Encryption Standard
(AES) requirements [36, 21] and are commonly supported by other ciphers. Extending the
key size of Durian to a size larger than 256 bits would require a longer array of registers

2A traditional 4-branch GFN is composed of four data lines (as in Durian) and all round functions are
identical.
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Table 3: Minimum number of differentially active S-boxes in r rounds

r GFN4 CLEFIA [43] GFNSPS
4 [13, 14] Durian

1 0 0 0 -
2 1 1 5 1
3 2 2 10 -
4 6 6 15 4
5 8 8 20 -
6 12 12 30 8
7 12 14 30 -
8 13 18 35 15
9 14 20 40 -
10 18 22 45 20
11 20 24 50 -
12 24 28 60 30
13 24 30 60 -
14 25 34 65 34
15 26 36 70 -
16 30 38 75 40
17 32 40 80 -
18 36 44 90 40
19 36 46 90 -
20 37 50 95 45
21 38 52 100 -
22 42 55 105 50
23 44 56 110 -
24 48 59 120 60
25 48 62 120 -
26 49 65 125 65

and consequently a different underlying primitive polynomial to update the value of the
registers. It is possible to expand the 128-bit block size in steps of 64 bits, which would
require a different byte permutation in the I function in the middle of the cipher.

5.2 Number of Rounds
The number of rounds (16, 20 and 24) for each variant of the cipher is determined based
on the security analysis provided in Section 4. In particular, it was shown in Section 4.2
that constructing a differential characteristic that covers 12 or more rounds is not useful
as the probability of such differentials is significantly low and thus, not useful in an attack.
The increase of the number of rounds in steps of 4 can be regarded as imitating the AES.
In AES, the increase is in steps of 2, which can arguably be said to equal 4-round Durian
since 1 round of AES updates the whole state while Durian requires 2 rounds to accomplish
the same.

5.3 The Structure
The structure of Durian is based on an extended variant of the Feistel construction [22],
widely used and analyzed over the past 40 years, with a comprehensive survey provided by
Nachef, Patarin, and Volte [34]. Specifically, Durian employs a modified 4-branch Type-2
generalized Feistel network (GFN) [45], allowing identical encryption and decryption
circuits, differing only in the order of round subkeys, thus termed involutional. In contrast,
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the block cipher CLEFIA [42], which uses the standard 4-branch Type-2 GFN, requires
different fixed rotation offsets between rounds for encryption and decryption3. While
the rotations may have minimal hardware cost, they necessitate different encryption and
decryption circuits at the algorithm level in CLEFIA.

Several ciphers achieve the involutive property using different methods. Noekeon [20],
Anubis [2], and Khazad [3] employ involutive components like S-boxes and diffusion layers.
The Data Encryption Standard (DES) is also involutive due to its use of the Feistel network.
The lightweight block ciphers PRINCE [15] and PRINCE v2 [17] achieve this property
by incorporating an involutive component in the middle and making the second half the
inverse of the first, classified as reflection ciphers [16]. Beyne and Chen have further
validated the security of these designs [4]. The structure of Durian is inspired by this
approach.

There are some notable differences between Durian and PRINCE. One obvious difference
is the use of the SPN structure in PRINCE. Apart from this, PRINCE uses non-involutive
components in the first half of the cipher and thus, requires the inverse of the components
in the second half of the cipher. This is to preserve the involutive structure of the cipher.
In contrast, the only difference between the first and second half of Durian is the rotation
between the rounds. The nonlinear and linear diffusion transformations in the F function
need not be involutive due to the inherent property of the GFN.

The modified GFN structure also has other advantages in terms of security. In particular,
the resistance of the cipher against differential and linear cryptanalysis is improved
compared to the traditional Type-2 GFN. Furthermore, the resistance is comparable to
the diffusion switching mechanism technique employed in CLEFIA [41]. This would be
further explained in Section 4.2.

5.4 The Linear Diffusion Transformation
The linear diffusion transformations in the F and I functions of Durian use the maximal
distance separable (MDS) matrix. The main advantage of using an MDS matrix is
that the corresponding transformation has maximal branch number [21]. The branch
number denotes the minimum number of nonzero input and output words of the function
represented by the matrix. This number is used to estimate the strength of a block cipher
against differential and linear cryptanalysis.

Definition 1. Let x = (x0, x1, . . . , xm−1) compose of the concatenation of m n-bit words.
The Hamming weight hw(x) is defined as

hw(x) = #{i | 0 ≤ i < m, xi ̸= 0}.

In order words, the Hamming weight of x is the number of non-zero n-bit words in x.

Definition 2. Let L denote a linear diffusion transformation that accepts and outputs m
n-bit words. Its branch number, denoted B(L), is defined as

B(L) = min{hw(x) + hw(L(x))}

where x ̸= 0 and B(L) ≤ m + 1.

In essence, the branch number denotes the minimum number of non-zero input and
output words of the linear transformation L, given a non-zero input.

The linear diffusion transformations used in the F and I functions (see Sections 2.3.3
and 2.3.4) are taken from the AES and CLEFIA block ciphers, respectively. Both possess
the maximal branch number of B(L) = 5 for m = 4 and n = 8.

3Encryption requires 32-bit left rotation, while decryption needs 32-bit right rotation.
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5.5 The Nonlinear Transformation
In Durian, the 8 × 8 bijective S-box s in S is the only component that provides nonlinearity
in the cipher. The S-box is constructed from a non-permutation power function that
provides high nonlinearity and low differential uniformity. Since the outputs of this function
is a non-permutation, additional operations are required to be made to the outputs in
order to convert the non-permutation outputs into a permutation.

The non-permutation power function used to construct the S-box of Durian is 65z3 +
64z4 + 17 where z ∈ {0, 1}8. Using a specialized technique, the outputs of this function
are modified to produce a bijective S-box.

The S-box of Durian has the following properties:

• Nonlinearity of 112.

• Algebraic degree of 7.

• Maximum differential probability of 2−5.4 (i.e. differential uniformity of 6).

• Maximum linear probability of 2−6 (i.e. linear approximation of 16).

• No fixed points and opposite fixed points.

The Langrange interpolation and the algebraic normal forms of the S-box are given in the
full version of this article.

The maximum differential probability has to be low in order to thwart differential
cryptanalysis. This can be derived from the differential probability of the S-box.

Definition 3. Given input and output differences ∆a, ∆b ∈ {0, 1}n, the differential
probability of the S-box S for these differences is defined as

DP (∆a, ∆b) = #{x ∈ {0, 1}n | S(x) ⊕ S(x ⊕ ∆a) = ∆b}
2n

.

Definition 4. The maximum differential probability DPmax for an S-box is given by

DPmax = max
∆a,∆b ̸=0

DP (∆a, ∆b).

For Durian,
DPmax = 6

256 = 2−5.4.

The above maximum differential probability is used to argue the security of Durian against
differential cryptanalysis, which is described in Section 4.2.

As in the differential probability, the maximum linear probability also has to be low in
order to thwart linear cryptanalysis. This can be derived from the linear probability of the
S-box

Definition 5. Given input and output masks λa, λb ∈ {0, 1}n, the linear probability of
the S-box S for these masks is defined as

LP (λa, λb) =
(

#{x ∈ {0, 1}n | λa · x = λb · S(x)}
2n−1 − 1

)2
.

The above can also be defined as

LP (λa, λb) = (2 · Probx{λa · x = λb · S(x)} − 1)2.

Definition 6. The maximum linear probability LPmax for an S-box is given by

LPmax = max
λa,λb ̸=0

LP (λa, λb).
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For Durian,

LPmax =
(

16 + 128
128 − 1

)2
= 2−6

The above maximum linear probability is used to argue the security of Durian against
linear cryptanalysis, which is described in Section 4.2.

5.6 Key Schedule
The criteria for designing the key schedule is as follows.

1. Supports the same key lengths as the AES, which are 128, 192 and 256 bits. This
makes the cipher compatible with existing software and hardware infrastructure.

2. Generating subkeys for 128, 192 and 256 -bit keys should be performed using the
same algorithm.

3. The number of different constants to be stored should be kept at a minimum. For
all instances of the cipher, for a compact implementation, only 64 bits of constant
value are required to be stored. This is because the constants for Durian-192 and
Durian-256 variants can be derived from a single fixed 64-bit value used in Durian-128.

4. Knowledge of a pair of 32-bit subkeys in one round does not immediately give the
value of the subkey of either the previous or subsequent round. This is to make key
recovery attacks much harder. Following Henricksen’s classification, Durian’s key
schedule is of Type 2C in which all master key bits are used to derive each round
subkey [23, Section 2.1]. Type 2C is considered to be one of the strongest in this
classification.

The key schedule is inspired by the key schedule of the block cipher Serpent [1]. In
Serpent, the 256-bit master key is written as eight 32-bit values wi−8, wi−7, . . . , wi−1.
Then, the following affine recurrence is run to produce a set of 132 32-bit intermediate key
values w0, w1, . . . , w131:

wi = (wi−8 ⊕ wi−5 ⊕ wi−3 ⊕ wi−1 ⊕ ϕ ⊕ i) ≪ 11

where ϕ = 9E3779B9. The intermediate values are further subjected to the eight 4 × 4
S-boxes of Serpent before being used as the 33 128-bit round subkeys.

For ease of comparison, the key schedule of Durian is again given here. It is based on
the following relation

ti =
{

S((ti−8 ⊕ ti−6 ⊕ ti−5 ⊕ ti−1 ⊕ rc0 ⊕ i) ≪ 11) if i mod 4 = 0,
(ti−8 ⊕ ti−6 ⊕ ti−5 ⊕ ti−1 ⊕ rc1) ≪ 7 otherwise.

The relation is based on a linear feedback shift register (LFSR) and the underlying
polynomial i.e. z8 + z7 + z3 + z2 + 1 is primitive. The different rotation offsets and
constants, together with the nonlinear S function, prevents the construction of weak keys
and related keys. The key material is derived only after the iteration is performed 12 times
and after the nonlinear transformation has been applied four times. This is to reduce the
occurrence of trivial difference trails in the round subkeys. The use of the S-box only in
the fourth iteration of the above relation is for both nonlinearity and efficiency purposes.

The constants used in the key schedule algorithm are derived from the first 64-bit
hexadecimal representation of π−1 where π is the mathematical constant that defines the
ratio of a circle’s circumference to its diameter. The value of the constant is rc0 = 517CC1B7
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and rc1 = 27220A94 for Durian-128. The round subkey constants for Durian-192 and Durian-
256 can be derived from Durian-128 as follows:

rc0 = S(517CC1B7 ≫ 7), rc1 = S(27220A94 ≫ 11) for Durian − 192,

rc0 = S(517CC1B7 ≫ 15), rc1 = S(27220A94 ≫ 19) for Durian − 256.

This is an example of a nothing up my sleeve number. The derivation of constants from
such numbers is common in cryptography, and is used, for instance, in the block ciphers
Blowfish [38], RC5 [37] and ARIA [32].

6 Implementation Aspects
This section describes an optimization technique that can be used to implement Durian.
The technique combines the application of the S-boxes in the S function and the MDS
matrix in the P function. This technique has been similarly applied to the Sony block
cipher CLEFIA [43, Chap. 4] and the AES [21, Chap. 4]. We repeat some of the materials
here.

6.1 The F Function
Let (x0, x1, x2, x3) denote the input of the F function after the key addition and let
(y0, y1, y2, y3) denote the output of the F function. The input and output is related as:




y0
y1
y2
y3


 =




02 03 01 01
01 02 03 01
01 01 02 03
03 01 01 02







s(x0)
s(x1)
s(x2)
s(x3)


 .

The above can be viewed as a linear combination of four column vectors:



y0
y1
y2
y3


 =




02
01
01
03


 s(x0) ⊕




03
02
01
01


 s(x1) ⊕




01
03
02
01


 s(x2) ⊕




01
01
03
02


 s(x3). (1)

Then, the following tables Ti can be defined where the input size is 8 bits and the
output size is 32 bits

T0(x) =




02 · s(x)
01 · s(x)
01 · s(x)
03 · s(x)


 , T1(x) =




03 · s(x)
02 · s(x)
01 · s(x)
01 · s(x)


 ,

T2(x) =




01 · s(x)
03 · s(x)
02 · s(x)
01 · s(x)


 , T3(x) =




01 · s(x)
01 · s(x)
03 · s(x)
02 · s(x)


 .

Therefore, Equation 1 can be rewritten as



y0
y1
y2
y3


 = T0(x0) ⊕ T1(x1) ⊕ T2(x2) ⊕ T3(x3).
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Each table Ti has 256 4-byte entries and thus, one table requires 256×4 = 28 ×22 = 210

bytes, or 1KB. There are four tables and hence, 4KB of storage is required to implement
this technique. Note that the tables T1, T2 and T3 are rotated versions of T0. A further
reduction of storage is thus possible by only implementing T0. Using this technique, the
storage requirement is just 1KB. In matrix form, we have

T1(x) =




0 0 0 1
1 0 0 0
0 1 0 0
0 0 1 0


 · T0(x), T2(x) =




0 0 1 0
0 0 0 1
1 0 0 0
0 1 0 0


 · T0(x),

T3(x) =




0 1 0 0
0 0 1 0
0 0 0 1
1 0 0 0


 · T0(x).

Note however, in exchange for saving the cost of storage, the implementation requires
additional rotation operations. The values for the tables T0, T1, T2 and T3 are given in
the full version of this article.

6.2 The I Function
The I function contains an involutive MDS matrix and thus, the same argument described
in the previous section can be used here. The exception is that there is no application of
the S-box. Let (x0,0, x0,1, . . . , x0,3, x1,0, . . . , x1,3, x2,0, . . . x3,3) denote the 16-byte input of
the function θ and (y0,0, y0,1, . . . , y0,3, y1,0, . . . , y1,3, y2,0, . . . , y3,3) denote its output. The
output of θ is related to its input by




y0,i

y1,i

y2,i

y3,i


 =




01 08 02 0A
08 01 0A 02
02 0A 01 08
0A 02 08 01







x0,i

x1,i

x2,i

x3,i




where i = 0, 1, 2, 3.
A similar equation to that of Equation 1 can be built and thus the following tables

T4, T5, T6, T7 can be defined to implement the function θ.

T4(x) =




01 · x
08 · x
02 · x
0A · x


 , T5(x) =




08 · x
01 · x
0A · x
02 · x


 ,

T6(x) =




02 · x
0A · x
01 · x
08 · x


 , T7(x) =




0A · x
02 · x
08 · x
01 · x


 .

The amount of storage required is 4KB. However, similar as before, the tables T5, T6 and
T7 can be derived from T4. So, if this fact is used, only 1KB is required but additional
rotation operations need to be performed. The values for the tables T4, T5, T6 and T7 are
given in the full version of this article.

7 Performance Analysis
This section presents a preliminary performance analysis of Durian on both software and
hardware. For both platforms, the results were benchmarked with the AES.
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7.1 Software
The block ciphers are implemented in the C language and were benchmarked on a 64-bit
Intel Xeon 2.93 GHz PC with 48 GB of RAM using Windows 7 Professional. A comparison
is performed with an implementation of the AES block cipher in the LibTomCrypt version
1.17 library. All codes are compiled with the optimization flag set to ‘-O1’.

The performance tests were performed to assess the speed of Durian and AES for
encryption and the key scheduling algorithm (which produces the subkeys for both encryp-
tion and decryption). For encryption, the results were obtained by encrypting 10 MB,
100 MB, 500 MB and 1 GB of data in the electronic codebook (ECB) mode of operation
(i.e. the encryption is performed block by block). The performance of the key scheduling
algorithm was assessed based on the number keys processed. The results for each of these
tests are compiled in Tables 4 and 5, respectively. Note that the figures obtained may not
represent the best speed obtained for both Durian and AES. This is to state that there
may exist better implementation of these ciphers compared to our implementation.

Table 4: Encryption speed (in seconds) of Durian and AES

Cipher Data Size Avg. Throughput
10 MB 100 MB 500 MB 1 GB (MBps)

Durian-128 0.075 0.742 3.710 7.406 134.475
AES-128 0.075 0.740 3.701 7.399 134.680
Durian-192 0.090 0.892 4.436 8.880 112.136
AES-192 0.087 0.864 4.300 8.597 115.820
Durian-256 0.104 1.036 5.176 10.371 96.425
AES-256 0.100 0.992 4.942 9.875 100.811

Based on our implementation for encryption, Durian-128 is able to perform encryption
at the rate of 134.475 Megabytes per second (MBps). This is slightly slower (about 0.2%
slower) than AES-128 which is able to perform encryption at the rate of 134.680 MBps.
Durian-192 and Durian-256 are able to encrypt at the rate of 112.136 and 96.425 MBps,
respectively. These figures are 3.2% slower than AES-192 which is able to encrypt at
115.820 MBps and 4.4% slower than AES-256 which is able to encrypt at 100.811 MBps.
Although the results show that the performance of Durian is slightly slower than the AES,
it is however still competitive and comparable to the AES.

Table 5: Key scheduling speed (in seconds) of Durian and AES

Cipher Number of keys (in millions) Avg. Throughput
0.1 M 1 M 10 M 100 M (M keys per second)

Durian-128 0.016 0.157 1.573 15.736 6.333
AES-128 0.019 0.186 1.842 18.435 5.373
Durian-192 0.017 0.182 1.801 18.048 5.618
AES-192 0.020 0.199 1.961 19.647 5.053
Durian-256 0.021 0.209 2.037 20.375 4.841
AES-256 0.025 0.243 2.411 24.145 4.101

In the key scheduling algorithm, Durian-128 is able to process 6.333 million keys per
second. This is considerably faster (about 17.9% faster) than AES-128 which is able to
process only 5.373 million keys per second. Durian-192 and Durian-256 are able to process
5.618 and 4.841 million keys per second, respectively. These figures are 11.2% and 18%
faster than AES-192 and AES-256, respectively. These results put Durian in a superior
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position to that of the AES in processing the secret master key. It is therefore advantageous
to implement Durian in systems where the secret key is frequently changed. We would like
to stress again that the results obtained are based on our own implementation and may
not represent the best speed for Durian. However, the results are sufficient to show the
average performance of Durian as compared to the AES.

7.2 Hardware
In this section, we demonstrate the performance of Durian and AES on four FPGA
devices from the Xilinx family: Virtex-7, Artix-7, Kintex-7 and Spartan-6. A round-based
architecture of the ciphers was utilized. The S-box was implemented as a lookup table
and the subkeys were pre-computed. The implementation also made use of 128-bit data
path. The algorithms are coded using Verilog and Mentor Graphics ModelSim and Xilinx
ISE were used for simulation and design synthesis, respectively.

The results are given in Table 6. It is interesting to note that the results for both
Virtex-7 and Kintex-7 are identical. In terms of area, each of the Durian variants occupies
significantly fewer slices (between 40%–45%) against its AES counterpart on all platforms.
Its throughput, however, cannot seem to match the AES. If we consider the efficiency
metric, the Durian variants are slightly inefficient, between 10%–28%, against the AES.
Based on this, it can be stated that Durian is still comparable to the AES.

Table 6: Performance of Durian and AES on FPGA

Cipher Device Slices Freq. Throughput Efficiency
(MHz) (Gbps) (Mbps/slice)

Durian-128 Virtex-7 1657 224.02 1.37 0.82
Artix-7 1660 170.30 1.04 0.63
Kintex-7 1657 224.02 1.37 0.82
Spartan-6 1649 89.12 0.54 0.33

Durian-192 Virtex-7 1658 225.38 1.15 0.70
Artix-7 1668 171.71 0.88 0.53
Kintex-7 1658 225.38 1.15 0.70
Spartan-6 1683 89.66 0.46 0.27

Durian-256 Virtex-7 1725 224.42 0.99 0.57
Artix-7 1732 171.71 0.76 0.44
Kintex-7 1725 224.42 0.99 0.57
Spartan-6 1721 89.66 0.40 0.23

AES-128 Virtex-7 2884 332.82 3.28 1.14
Artix-7 2731 231.59 2.28 0.83
Kintex-7 2884 332.82 3.28 1.14
Spartan-6 2994 126.25 1.24 0.42

AES-192 Virtex-7 2899 292.79 2.50 0.86
Artix-7 2906 202.62 1.73 0.59
Kintex-7 2899 292.79 2.50 0.86
Spartan-6 3082 107.39 0.92 0.30

AES-256 Virtex-7 2997 296.70 2.23 0.75
Artix-7 2895 202.62 1.53 0.53
Kintex-7 2997 296.70 2.23 0.75
Spartan-6 3138 106.70 0.80 0.26
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8 Conclusion
Durian is a general-purpose block cipher designed to be comparable to the industry
standard AES. It supports a 128-bit message block and offers key options of 128, 192 and
256 bits. Durian achieves the reflective property by combining two Type-2 generalised
Feistel networks with an involution function. The primary difference between the first and
second halves of the cipher is the direction of rotation, which incurs no additional hardware
cost. Given that Durian is a relatively new block cipher, we encourage third-party analysis
to thoroughly evaluate and ensure its security.
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Abstract. This paper presents an attack on the standard modulus of RSA N = pq
where p, q are two large and balanced primes. Considering the modified Euler Totient
function ψ(N) = (p2 − 1)(q2 − 1), we showed that the modulus can be factored if
there exists the Diophantine equation such that eix− ψ(Ni)yi = 1 where ei, Ni are
the multiple public keys, ψ(Ni), yi are the numerous private keys while x remains the
same. Exploiting the information of public keys Ni, ei and the Diophantine equation,
we managed to retrieve p, q via lattice basis reduction method.
Keywords: RSA cryptosystem · Integer factorization problem · Lattice reduction

1 Introduction
The security of digital data sent through unsafe channels relies on the ability of any
mechanisms to keep the data unreadable to unauthorized parties. One of the well-known
mechanisms that have been used for over 40 years since its invention namely RSA [9]
provides security and authenticity of digital data. Furthermore, the hardness of factoring
the modulus N = pq such that p, q are large primes, solving key equation ed− kϕ(N) = 1
where d, k, ϕ(N) are kept secret, and solving me ≡ C (mod N) given the known values of
e, C,N ensure the security of the RSA against adversaries. Regardless, consistent analyses
of finding its weaknesses have been made on this cryptosystem to ensure the RSA remains
practicable and impregnable. Thus, it will help cryptographic practitioners avoid using
these weaknesses in their algorithms.

To this day, the construction of the RSA algorithms is indeed impenetrable via direct
intrusion but not through algebraic analysis. In 1990, Wiener [11] managed to factor
the modulus N = pq by utilizing the continued fraction expansion method provided the
decryption key d must be d < 1

3N
1
4 . Later in 1999, Boneh and Durfee [3] managed to

increase the bound up to d < N0.292 using the lattice reduction method. Since then, active
research has been done either to increase the efficiency or to improve the bound of the
private key d that is insecure from attacks.

Numerous modifications have been made to the elements involved in the RSA algorithms
that allow for faster key generation and decryption. Multi-power RSA and multi-prime
RSA are such instances of RSA variants that alter the modulus N = pq into N = prqs

and N = pqrs respectively. Nonetheless, these patterns are also vulnerable if they fall
into certain conditions. Apart from that, researchers are also interested in studying and
modifying the original Euler Totient Function. Suppose the original function used in the
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RSA was (p− 1)(q − 1). It is proven that this function can be exploited in factoring the
modulus N provided some conditions are satisfied. Therefore, the designers focused on
modifying the equations in their new cryptosystem to strengthen the security. For instance,
in 1995, [4] proposed a modified RSA scheme that was based on singular elliptic curve
y2 ≡ x3 + bx2 mod N where N = pq is the RSA modulus. They used the new equation
ψ(N) = (p2 − 1)(q2 − 1) in their key generation whilst preserving the other original keys.
However, the works in [1, 2, 12] showed that this type of RSA variant is vulnerable to
certain circumstances.

Another instance of attack upon the RSA is when multiple public keys are utilized
without changing the private key. Since the communication occurs between various parties,
thus one may attempt to regenerate different pair of public keys but the private key
remains the same. In 2014, Nitaj et al. [7] showed that it is vulnerable for one to use
either eid − kiϕ(Ni) = zi or eidi − kϕ(Ni) = zi provided some conditions are fulfilled.
In their work, they focused on the standard modulus N + pq. Few years after, in 2018,
Rahman et al. [8] proposed an attack on the modulus N = p2q using the same approach
as in [7]. Their attack worked when the primes pi and qi shared the most significant
bits. In 2024, Ruzai et al. [10] presented an attack on the standard modulus N = pq.
Focusing on the public key pairs (Ni, eI) and a fixed value y, they worked on the equation
eix

2
i − y2ϕ(Ni) = zi and showed that the modulus Ni can be factored via lattice reduction

technique.

In this paper, we present an attack on the system of equations utilizing modified RSA
key equation ψ(N) = (p2 − 1)(q2 − 1). We showed that using the distinct public keys
e,N and private key y is insecure while maintaining the same private exponent x such
that eix− ψ(Ni)yi = 1. Utilizing lattice reduction method [5], we managed to retrieve pi

and qi of Ni = piqi for 1 < i < k; k ≥ 2 in polynomial time. This paper is organized as
follows. Section 2 describes briefly the mathematical tools that have been used throughout
this work. Meanwhile, we present the previous attacks and our new attack in Section 3
respectively. Lastly, we conclude our work in Section 4.

2 Preliminaries
This section presents essential mathematical tools needed throughout our works.

2.1 Lattice and diophantine equations
Let v1, v2, . . . , vk ∈ Rn be k linearly independent vectors with k ≤ n. Thus, the form of
L =

{∑k
i=1 uivi|ui ∈ Z

}
is called a lattice spanned by the basis containing the set of all

integer linear combinations of the vectors vi, v2, . . . , vk, and k is its dimension. Meanwhile,
the determinant of L is defined as det L =

√
det(V TV ) where V is the matrix of the basis

vector v1, . . . , vk in Rn. Later on, Lenstra, Lenstra, and Lovász [5] designed an efficient
algorithm objectively to find the reduced basis vectors. Their work is presented in the
following theorem.

Theorem 1. Let L be a lattice spanned by a basis {v1, . . . , vk} with k dimension. A
reduced basis {b1, . . . , bk} is produced via the LLL algorithm satisfying

||b1|| ≤ · · · ||bi|| ≤ 2
k(k−1)

4(k+1−i) det(L) 1
k+1−i .

for all 1 ≤ i ≤ k.
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The LLL algorithm has been implemented abundantly in various applications. For instance,
it solved the problem of simultaneous diophantine approximation. The following theorem
presented the method described by Lenstra, Lenstra, and Lovász [5] to solve this problem
considering a lattice with real entries.

Theorem 2. Given rational numbers α1, . . . , αn and 0 < ϵ < 1, there is an algorithm that
can compute in polynomial time the integers p1, . . . , pn and q ∈ Z+ such that

max
i

|qαi − pi| < ϵ and q ≤ 2n(n−3)/4 · 3n · ϵ−n.

Please refer to the proof in [7].

2.2 Useful lemmas
We start by presenting a crucial lemma regarding the bound of the primes p and q.

Lemma 1. Let N = pq with q < p < 2q. Then

2−1/2N1/2 < q < N1/2 < p < 21/2N1/2.

Please refer to the proof in [6].

Next, the following lemma shows the bound of N2 − ψ(N).

Lemma 2. Let N = pq and ψ(N) = (p2 − 1)(q2 − 1) where q < p < 2q are large primes.
Then

2N − 1 < N2 − ψ(N) < 5
2N − 1.

Proof. Suppose N = pq with q < p < 2q. We have N2−ψ(N) = p2+q2−1 = p2+
(

N2

p2

)
−1.

The function f is defined as f(p) = p2+ N2

p2 −1. Thus, the derivative f ′(p) = 2p5−2N2

p3 which
shows that the function f is strictly increasing for the interval p, that is (N1/2, 21/2N1/2).
Hence, for f

(
N1/2)

< f(p) < f
(
21/2N1/2)

we have
(
N1/2

)2
+ N2

(
N1/2

)2 − 1 < p2 + N2

p2 − 1 <
(

21/2N1/2
)2

+ N2
(
21/2N1/2

)2 − 1

From the left hand side of the inequality, we have p2 + N2

p2 − 1 > 2N − 1 while for the right
hand side of the inequality, we have p2 + N2

p2 − 1 < 5
2 − 1. Since p2 + N2

p2 − 1 = N2 −ψ(N),
this terminates the proof.

3 Attack on Equation eix− ψ(Ni)yi = 1
We present the first attack in the following theorem.

Theorem 3. Suppose k ≥ 2, Ni = piqi for 1 ≤ i ≤ k be k moduli each with the same size
N where N = min{Ni}. Let ei for i, . . . , k be k public exponents. Define δ = k

k+1 . If
there exists integer x < Nδ and k integers yi < N δ such that eix− ψ(Ni)yi = 1, then the
modulus N is possible to be factored in polynomial time.

Proof. Suppose k ≥ 2 and i = 1, . . . , k, then the equation eix − ψ(Ni)yi = 1 can be
rewritten as

eix−N2
i yi +N2

i yi − ψ(Ni)yi = 1
eix−Niyi = 1 + yi(ψ(Ni) −N2

i )).
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Dividing by Ni we would have,
∣∣∣∣
ei

N2
i

x− yi

∣∣∣∣ =
∣∣1 + yi(ψ(Ni) −N2

i

∣∣
N2

i

<

∣∣yi(1 + ψ(Ni) −N2
i )

∣∣
N2

i

.

From Lemma 2, N2 − ψ(N) < 5
2 + 1 and taking N = min{Ni} hence,

∣∣yi(1 + ψ(Ni) −N2
i )

∣∣
N2

i

<
Nδ

( 5
2N + 2

)

N2
i

<
Nδ

( 5
2N

)

N2

= 5
2N

δ−1.

Thus we have ∣∣∣∣
ei

Ni
x− yi

∣∣∣∣ <
5
2N

δ−1. (1)

It can be seen that the inequality in 1 relates to the condition stated in Theorem 2 which
is |qαi − pi| < ϵ.

Now, we proceed to show the existence of the integer x and the integers yi. Assuming
ϵ = 5

2N
δ−1 and δ = k

(k+1) , we have

Nδ · ϵk = Nδ

(
5
2N

δ−1
)k

=
(

5
2

)k

.

Then, since
( 5

2
)k = (2.5)k < 2

k(k−3)
4 · 3k for k ≥ 2, we get Nδϵk < 2

k(k−3)
4 · 3k. Thus, if

d < Nδ then, x < 2
k(k−3)

4 · 3k · ϵ−m . In summary,
∣∣∣∣
ei

Ni
x− yi

∣∣∣∣ < ϵ, x < 2
k(k−3)

4 · 3k · ϵ−m.

which requires the condition of Theorem 2 to be fulfilled in order to find both integers x
and yi for i = 0, . . . , k. Using these values, one can compute

ψ(Ni) = eix− 1
yi

= (p2
i − 1)(q2

i − 1). (2)

Expanding and rearrange Eq. (2), we have

p2
i + q2

i = N2
i − ψ(Ni) + 1. (3)

Also, we have the information,

(pi + qi)2 = p2
i + q2

i + 2Ni

= N2
i − ψ(Ni) + 1 + 2Ni

pi + qi =
√

(N2
i − ψ(Ni) + 1 + 2Ni). (4)
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Substituting the value from Eq. (4) into quadratic equation,

X2 − (pi + qi)X +Ni = 0
X2 − (pi + qi)X +Ni = 0

(X − pi)(X − qi) = 0. (5)

Solving Eq. (5) would give us roots of pi and qi.

The following algorithm summarizes the steps of factoring the modulus N .

Algorithm 3.1 Factoring k RSA moduli simultaneously via Theorem 3
Input: The public RSA key pairs (Ni, ei) for i = 1, . . . , k.
Output: The primes factors pi and qi or ⊥.

1. Set N = minN1, . . . , Nk.
2. Compute δ = k

k+1 .
3. Compute ε = 5

2N
δ−1.

4. Compute C = 3k+1 · 2
(k+1)(k−4)

4 · ε−k−1.
5. Compute lattice L spanned by the rows of the matrix M as shown in the

proof of Theorem 2.
6. Compute matrix K by applying LLL algorithm onto M.
7. Compute matrix H = KM−1.
8. Assign each element in the first row of H (starting from the most left) as
X,Y1, . . . , Yk respectively.

9. for i = 2, 3, . . . , k do
10. Compute ψ(Ni) = eiX−1

Yi
.

11. Let Si = pi + qi. Compute Si =
√
N2

i − ψ(Ni) − 1 − 2Ni.
12. Compute pi, qi = X2 − SiX +Ni = 0.
13. if pi, qi ∈ Z then output pi, qi.
14. else Algorithm fails or ⊥.

end if
end for

3.1 Examples
The following example illustrates Algorithm 3.1.

Example 1. Consider the three pairs of the RSA moduli and its corresponding public
exponents.

N1 = 253220765804832380052262024897350881411,
e1 = 8352426474219413781750612054669089177836834210639856194468074290664655211147,
N2 = 194908944610133200193660601667895335747,
e2 = 21345516244339126547661522845471933825221413676280512067343917970910338062987,
N3 = 127486772293767676022992307161916689657,
e3 = 9041381051914977799730665675012848936348658139569833600778020933314641425227.

Then, we set

N = min(N1, N2, N3) = 127486772293767676022992307161916689657

For k = 3, we obtain k
k+1 = 0.375 and ε = 5

2 · Nδ−1 ≈. Then, applying Theorem 2, we
compute C = [3k+1 · 2(k+1)(k+4)4 · ε−k−1] = 132178285514178326500638424065475223836



Nurul Nur Hanisah Adenan, Muhammad Rezal Kamel Ariffin and Zahari Mahad 145

We also compute Ci = [− C·ei

N2
i

] for i = 1, 2, 3 and obtain

C1 = −17217660490514083453041148055005395162,
C2 = −74268257978949950023666474950894327291,
C3 = −73530011827616972608095990484858831074

Then, we compute a lattice L spanned by the rows of the matrix

M =




1 C1 C2 C3
0 C 0 0
0 0 C 0
0 0 0 C




Performing the LLL algorithm to the Matrix M would yield

K =




K11 · · · K14
... . . . ...

K41 . . . K44




K11 = 255929320328483
K12 = −91972327270006
K13 = 112017302482815
K14 = 342005142641862
K21 = −663502308951713181165929548783738
K22 = −1344365126252074249927651644713064
K23 = 24789888468766336065911918118090
K24 = 126864785816002898843323125868456
K31 = 1143405454046964905858869871231785
K32 = 83670522297219340565303890700998
K33 = −1099364657786459577190698136281427
K34 = −473056467498166525473002268580634
K41 = −1391972281477732811545671211622320
K42 = 618514744958873746139420052592244
K43 = −940533386714458854516613095675808
K44 = 1516026248403791914472007332795516

Next, computing matrix H = K · M−1 gives us

H =




H11 · · · H14
... . . . ...

H41 . . . H44



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where

H11 = 255929320328483
H12 = 33337579844090
H13 = 143801417249388
H14 = 142371993081789
H21 = −663502308951713181165929548783738
H22 = −86428398172689044805623099481045
H23 = −372808290402351978264360031846563
H24 = −369102477272164235313182555339621
H31 = 1143405454046964905858869871231785
H32 = 148941006718316147817481800779188
H33 = 642455989691207191594557284517128
H34 = 636069807024518251790756385697546
H41 = −1391972281477732811545671211622320
H42 = −181319541719423356400564314563661
H43 = −782120573724998382998562521131348
H44 = −774346088108350775795979616399999

Observe from the first row of the matrix H,

X = 255929320328483,
Y1 = 33337579844090,
Y2 = 143801417249388,
Y3 = 142371993081789.

Next, we compute ψ(Ni) = eiX−1
Yi

,

ψ(N1) = 64120756234785767594964219830501213094365295994120307209008902091973140480000
ψ(N2) = 37989496689035971870436488709545762442152248655490732915220520237204475581440
ψ(N3) = 16252877109882969554525621517760249476535655248534830656603737748620159229760

Since we knowψ(Ni), we can compute Si =
√
N2

i − ψ(Ni) + 1 + 2Ni,

S1 = 31877810089252638588
S2 = 28373881244619319492
S3 = 22588540125047578198

Utilising values of Si, we can solve for pi, qi from the quadratic equation X2 −SiX+Ni = 0.
Finally we have

p1 = 15028999435905310589
p2 = 16708911996216745859
p3 = 11565865260296943587
q1 = 16848810653347327999
q2 = 11664969248402573633
q3 = 11022674864750634611
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4 Conclusion
In conclusion, our contribution to this study is factoring the modulus of RSA given a
Diophantine equation eix−ψ(Ni)yi = 1 where every variable but x has distinct values. We
showed that it is feasible to recover the private exponents pi, qi via lattice basis reduction
if certain conditions are fulfilled.
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Abstract. The Diffie-Hellman key exchange scheme was the first public key protocol
invented for exchanging cryptographic keys securely over a public channel. Stickel’s key
exchange scheme is a revolution of the Diffie-Hellman scheme over a non-commutative
structure. Stickel’s scheme and the tropical form of the scheme are shown to be
vulnerable to linear attack and display of patterns by higher powers of tropical matrices,
respectively. In this work, we improve the security of Stickel’s key exchange scheme.
The improved scheme employed matrix power function (MPF) over tropical semiring.
The tropical semiring protects the improved scheme from linear attack because
tropical matrices are generically non-invertible. Moreover, the matrix power function
replaced the power of tropical matrices that displayed the number of operations
carried out to obtain the public key by a matrix power. The improved scheme is
expected to be more secure than Stickel’s key exchange scheme and the tropical form
of the scheme.
Keywords: public-key cryptography · Stickel’s key exchange Scheme · tropical
semiring · matrix power function

1 Introduction
Cryptography plays a crucial role in today’s digital world, guaranteeing the confidentiality
and integrity of digital transactions. Public key cryptography lies at the core of the task;
it allows two parties to interact privately even in the absence of pre-arranged security keys.
Group theory provides a diverse cryptography challenge, especially regarding non-abelian
groups [11]. Construction of Public key cryptography on non-abelian groups is a relatively
recent field of study. Stickel key exchange scheme [20] lies in non-abelian group-based
cryptography, the author used matrices in a group of n×n invertible matrices as a platform.
The scheme was attacked due to the invertibility of the chosen platform (linear attack).
Grigoriev and Shpilrain [8, 9] improved the scheme using tropical semiring as a platform
to make it resistant to linear attack. The tropical schemes were shown to be vulnerable
to attacks by Kotov and Ushakov [12], Rudy and Monico [16] and other related attacks.
The attacks exploited the periodicity of tropical matrices. The display of patterns by the
higher power of matrices is the main drawback of tropical algebra in cryptography [1].

In this paper, we propose an improved key exchange scheme. The proposed scheme is
an improvement of Stickel’s key exchange scheme. The improved scheme uses the exponent
variant of Stickel’s scheme rather than the polynomial variant that was used by Grigoriev
and Shpilrain [8] in their tropical version of Stickel’s scheme. The advantage of tropical
protocols over classical protocols is improved efficiency because when conducting matrix
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multiplication in a tropical sense one need not perform any multiplication. The other
advantage is tropical matrices are generically not invertible which makes the matrices
less vulnerable to linear attack. The employment of matrix power function over tropical
semiring in the improved scheme reduces the pattern displayed by the higher powers of
tropical matrices.

The remaining part of the paper is organized as follows: section 2 gives basic definitions
and terms on tropical algebra and some of the operations defined on it. Section 3 discusses
some of the related works on matrix algebra and tropical matrix algebra. Section 4 presents
a proposed key exchange scheme, security analysis and an example. Section 5 gives a
performance comparison between the existing schemes and the proposed scheme. Section
6 showcases some properties of tropical matrices in terms of propositions and corollaries.
Finally, The conclusion is presented in section 6.

2 Definitions of Basic Terms
Definition 1. [7] Ring: a non-empty set R with two binary operations + and × denoted
by (R, +, ×) is called a ring if the following properties hold:

1. (R, +) is an abelian group.

2. (R, ×) is a semi-group.

3. Distributivity of × over +.

Definition 2. [6] Semiring: a non-empty set R with two binary operations + and × is
called a semiring if it satisfies the following axioms:

1. ((R, +) is a commutative monoid with identity element 0

2. ((R, ×) is a monoid with identity element 1

3. Multiplication distributes over addition.

4. 0a = a0 = 0 for all a .

Definition 3. [13] Tropical Semiring: Let R be the set of real numbers, the set
Rmin = R ∪ ∞ (the extended set of real numbers) with two binary operations ⊕ and ⊗
defined by a ⊕ b = min(a, b) and a ⊗ b = a + b is called a tropical semi-ring if it is closed
under ⊕ and it contains 0 and ∞. The set Rmax = R ∪ −∞ with two binary operations ⊕
and ⊗ defined by a ⊕ b = max(a, b) and a ⊗ b = a + b is also a tropical semi-ring.

The structures satisfy the following properties:

1. Commutativity: for all a, b in Rmin and Rmax

a ⊕ b = b ⊕ a
a ⊗ b = b ⊗ a

2. associativity: for all a, b, c in Rmin and Rmax we have
a ⊕ (b ⊕ c) = (a ⊕ b) ⊕ c
a ⊗ (b ⊗ c) = (a ⊗ b) ⊗ c

3. Distributivity: for all a, b, c in Rmin and Rmax

(a ⊕ b) ⊗ c = (a ⊗ c) ⊕ (b ⊗ c)
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4. Idempotency: a ⊕ a = a for all a in Rmin and Rmax.

Definition 4. [17] Matrix power function: Let a and B be two matrices. The left-sided
matrix power function of the power matrix B and base matrix a is defined by Ba = X =
xij =

∏m
k=1 abik

jk . The right-sided matrix power function aB = Y = yij =
∏m

k=1 a
bkj

ik and
the two-sided matrix power function of power matrices B and C and base matrix a is
given by BaC = Z = zij =

∏n
k=1

∏n
l=1 a

bik.ylj

kl . Furthermore, given

a =
[

a11 a12
a21 a22

]
and B =

[
b11 b12
b21 b22

]

then,

Ba =

[
b11 b12
b21 b22

]
[

a11 a12
a21 a22

]
=

[
ab11

11 ab12
21 ab11

12 ab12
22

ab21
11 ab22

21 ab21
11 ab22

22

]

and

aB =
[

a11 a12
a21 a22

]
[

b11 b12
b21 b22

]

=
[

ab11
11 ab21

12 ab12
11 ab22

12
ab11

21 ab21
22 ab12

21 ab22
22

]
.

Definition 5. [2] Circulant Matrix: This is a square matrix n × n, where the ith row
of the matrix is obtained by right shifting (i − 1)th row cyclically by one position, the
general form of a circulant matrix is given below:
.

C =




c1 c2 . . . cn

cn c1 . . . cn−1
...

...
...

c2 c3 . . . c1


 .

Definition 6. [4] Tropical Matrix algrbra: The subset of the tropical semiring
M = Z ∪ [∞], the set of k × k matrices can be furnished with two binary operations ⊕
and ⊗ such that (aij) ⊕ (bij) = (aij ⊕ bij) and (aij) ⊗ (bij) = (a1i ⊗ b1j ⊕ . . . ⊕ ani ⊗ bnj),
the algebra Mk(Zmin) is called tropical matrix algebra.

Definition 7. [12] Tropical Polynomial: Let x1, x2, . . . , xn be the elements in (S, ⊕, ⊗) ⊂
Zmin. The product of the elements is called a monomial. Tropical Polynomial is a
linear combination of tropical monomial. Generally, tropical polynomial is given by
p(x) = ⊕n

i=0(ai ⊗ xi).

Definition 8. [15] Linear Periodic: a sequence of matrices {an, n ∈ N} is called periodic
if there exist a period ρ, a linear factor ϵ and some defect d such that for p > d, the
following equation holds:

an+ρ
ij = ϵ + an

ij .
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3 Related Works
In 2005, key exchange schemes were proposed by Stickel in [20], which are generalizations
of discrete logarithm problem (DLP) over non-abelian groups. Let G be a non-abelian
group and the elements a, b ∈ G do not commute, that is ab ≠ ba. Let n1 = |a| and
n2 = |b|. For key transmission, two random numbers would be chosen by the first party
(a) and a second party (B) such that (r, v) < n1, (s, w) < n2 and r, s, v, w ∈ N .

Table 1: algorithm 1: Stickel’s Key-Exchange Scheme (2005)
Input n × n matrices a, b as public and natural numbers r, v, s, w as private
Steps
1. Party (a) Chooses a, b and r, s and computes u = arbs then send u to party (B)
2. Party (B) Chooses a, b and v, w and computes v = avbw then send v to party (a)
3. Party (a) computes Ka = arvbs

4. Party (B) computes KB = avubw

Output Shared secret key Ka = KB

The author suggested a more general scheme and a polynomial scheme, which are like
the above system. The schemes were cryptanalyzed by Shpilrain [19] in 2008. The choice
of the group of invertible matrices GL(n, F ) on a finite field F makes the schemes prone
to linear attack. It is enough for an attacker to find matrices x and y such that

xa = ax

yb = by

xy = u

(2)

This can be translated into a system of 3k2 linear equations with 2k2 unknowns, where
a, b, u are known; x, y are unknown and k is the size of the matrix. For the general scheme,
the third equation in the above system is non-linear i.e.,u = xwy.The entire system can be
rewritten as

awyu−1 = wyu−1a

by = yb
(3)

With k2 unknowns and 2k2 linear equations. If k = 2, equation (2) will have 12
equations with 8 unknowns and equation (3) will have 4 equations with 8 unknowns.
If the solutions of the equation (2) and (3) are obtained an attacker can use v which
is one of the published keys to obtain the secret key. For example, in algorithm (1)
xvy = xarbwy = avxybw = avubw = KB

.
In 2014, Grigoriev and Shpilrain [8] proposed tropical algebra as a platform to improve

one of the Stickel’s schemes (polynomial version). Let S = (MnZ, ⊕, ⊗) be a set of tropical
matrices over Z, the set of integers. Let a, b ∈ S such that a ⊗ b ̸= b ⊗ a.

Table 2: algorithms 2:Tropical Key-Exchange Scheme (Shpilrain, 2014)
Input a, b ∈ Mn(Z, ⊕, ⊗) and polynomials p1(x),p2(x) and q1(x),q2(x) as private
Steps
1. alice chooses randomly two polynomials p1(x),p2(x) and sends u = p1(a) ⊗ p2(b) to Bob
2. Bob randomly selects q1(x),q2(x) and sends v = q1(a) ⊗ q2(b) to alice.
3. alice computes Ka = p1(a)⊗v ⊗ p2(b)
4. Bob computes Ka = q1(a)⊗u ⊗ q2(b)
Output Shared secret key Ka = KB
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The tropical version of the scheme was attacked by Kotov and Oshakov [12] in 2018 due
to the parameter selection of the scheme and the tropical polynomial used in the scheme.
They presented a general attack by finding X = ⊗D

i=0xi ⊗ a⊗i and Y = ⊗D
j=0yj ⊗ B⊗j such

that (⊕D
i=0xi⊗a⊗i)⊗(⊕D

j=0yj ⊗B⊗j) = U where xi and yj are integers. This can be written
as ⊕D

i,j=0xi ⊗yj ⊗V ij = U , where V ij = a⊗i ⊗B⊗j . The solution of mini,j(xi +yj , T ij
kl ) = 0

is enough to break the scheme, where k, l ∈ [1, n] , T ij
kl = V ij

kl −Ukl, (xi +yj) is the unknown,
T ij

kl is the coefficient, and kl, ij play a role of rows and columns respectively. In 2019,
Grigoriev and Shpilrain [9] developed a tropical key exchange protocol based on the
semi-direct product of semigroup purposely to avoid the homogeneous patterns produced
by the higher power of matrices. Subsequently, Rudy and Monico [16] presented an attack
on this protocol. The basis of the attack solely relies on the property of the sequence
(a)(k)k ≥ 1 where a(k) = (M, H)k is linearly ordered in the max-plus algebra, M and H
are public matrices used in the scheme. The property can give way to an attacker to use a
binary search method for finding the secret keys [16]. In the same year (2020), Isaac and
Kahrobaei [10] came up with an attack using a different approach. They assume that the
sequence formed in the cryptographic processes of the scheme is ultimately periodic. The
assumption implies that ak+p

ij = ϵ + ak
ij for all k ≥ D, where D is the bigger number than

the maximal degree of any tropical polynomial that could be used in the scheme. The
assumption holds when H is irreducible. The attack is more efficient in practice [10]. In
2022, Muanalifah and Sergeev [14] used a tropical discrete logarithm to suggest an attack
on the tropical semidirect product.

4 Proposed Key Exchange Scheme

In this paper, an improved key exchange protocol has been proposed using matrix power
function (MPF) problem, that is, given a base matrix a and matrix power function M find
a matrix Y such that M = a⊗Y , and a semiring action problem, that is, given a matrix K
and a matrix T ∈ U ⊗ K ⊗ V , find two matrices U and V such that T = U ⊗ K ⊗ V . If

a =
[

a11 a12
a21 a22

]
and B =

[
b11 b12
b21 b22

]

then,MPF on tropical matrix algebra is defined by

a⊗B =
[

a11 a12
a21 a22

]⊗
[

b11 b12
b21 b22

]

=
[

a⊗b11
11 ⊗ a⊗b21

12 a⊗b12
11 ⊗ a⊗b22

12
a⊗b11

21 ⊗ a⊗b21
22 a⊗b12

21 ⊗ a⊗b22
22

]

Let S be a tropical semiring, X1, X2, Y1, Y2, Z1, Z2, Q, R ∈ CMk(Zmin) ⊂ S be a
tropical circulant matrices in S and V be a matrix in Mk(Zmin) . The following steps will
be followed by Salima and Salim to share a secret key between them after agreeing on
X1, X2 ∈ CMk(Zmin) and V ∈ Mk(Zmin).
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Table 3: algorithm 3: Proposed Key Exchange Scheme
Input X1, X2 ∈ CMk(Zmin),V∈ Mk(Zmin) and Y1, Y2 ∈ CMk(Zmin), Q, R ∈ CMk(Zmin)
Steps
1. Salima choosesY1, Y2, Q ∈ CMk(Zmin) as private keys

compute: a = Q ⊗ (X⊗Y1
1 ⊗ X⊗Y2

2 )
B = a ⊗ V , she then sends B to Salim.

2. Salim chooses Z1, Z2, R ∈ CMk(Zmin) and
compute C = R ⊗ (X⊗Z1

1 ⊗ X⊗Z2
2 )

D = C ⊗ V , he then sends D to Salima.
3. Salima computes Ka = a ⊗ D
4. Salim computes KB = C ⊗ B
Output Shared secret key Ka = KB

4.1 Correctness of the scheme
Proposition 1. The two parties (Salima and Salim) shared the same key in algorithm
(3).

Proof. To show that Salima and Salim shared the same key, we need to show that

Ka = KB

From the proposed algorithm we have

Ka = a ⊗ D

=a⊗C ⊗ V

=[Q ⊗(X⊗Y1
1 ⊗ X⊗Y2

2 )] ⊗ [R ⊗ (X⊗Z1
1 ⊗ X⊗Z2

2 )] ⊗ V

=[Q ⊗R] ⊗ [(X⊗Y1
1 ⊗ X⊗Y2

2 ) ⊗ (X⊗Z1
1 ⊗ X⊗Z2

2 )] ⊗ V

=[Q ⊗R][(X⊗Y1
1 ⊗ X⊗Z1

1 ⊗ X⊗Y2
2 ⊗ X⊗Z2

2 ] ⊗ V

Similarly,

KB = C ⊗ B

=C⊗a ⊗ V

=[R ⊗(X⊗Z1
1 ⊗ X⊗Z2

2 )] ⊗ [Q ⊗ (X⊗Y1
1 ⊗ X⊗Y2

2 )] ⊗ V

=[R ⊗Q] ⊗ [(X⊗Z1
1 ⊗ X⊗Z2

2 ) ⊗ (X⊗Y1
1 ⊗ X⊗Y2

2 )] ⊗ V

=[R ⊗Q][(X⊗Z1
1 ⊗ X⊗Y1

1 ⊗ X⊗Z2
2 ⊗ X⊗Y2

2 ] ⊗ V

=[Q ⊗R] ⊗ [X⊗Y1
1 ⊗ X⊗Z1

1 ⊗ X⊗Y2
2 ⊗ X⊗Z2

2 ] ⊗ V

Since (CMk(Zmin, ⊕, ⊗) is commutative. Thus,

Ka = KB = [Q ⊗ R] ⊗ [X⊗Y1
1 ⊗ X⊗Z1

1 ⊗ X⊗Y2
2 ⊗ X⊗Z2

2 ] ⊗ V

This shows that the two parties shared the same key.

Example 1. Toy example of the proposed key-exchange scheme
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Let X1 =




7 1 5
5 7 1
1 5 7


 , X2 =




6 4 3
3 6 4
4 3 6


 ∈ CMk(Zmin, ⊕, ⊗)

Salima chooses

Y1 =




5 6 7
7 5 6
6 7 5


 , Y2 =




11 8 3
3 11 8
8 3 11


 ,

Q =




9 14 19
19 9 14
14 19 9


 ∈ CM3(Zmin, ⊕, ⊗)

as private keys and computes:

a = Q ⊗ (X⊗Y1
1 ⊗ X⊗Y2

2 )

=




9 14 19
19 9 14
14 19 9


 ⊗




165 163 155
155 165 163
163 155 165




=




169 172 164
164 169 172
172 164 169




B =




169 172 164
164 169 172
172 164 169


 ⊗




2 10 21
5 17 3
7 8 14




=




171 172 175
166 174 172
169 177 167




Salim chooses Z1, Z2, R ∈ CM3(Zmin, ⊕, ⊗) as private keys and compute:

C = R ⊗ (X⊗Z1
1 ⊗ X⊗Z2

2 ) and D = C ⊗ V

C=




94 93 95
95 94 93
93 95 94




D =




96 103 96
97 101 97
95 102 98




Salima computes Ka = a ⊗ D =




259 266 262
260 267 260
261 265 261




Salim computes KB = C ⊗ B =




259 266 262
260 267 260
261 265 261



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4.2 Security analysis of the proposed Scheme
Unlike the original Stickel’s Scheme and the original tropical version of the scheme, the
power of tropical matrices revealed the number of operations carried out for obtaining
the public key, the exponent in the improved scheme is a matrix, not a natural number.
Thus, the operations do not easily leak information to the adversary. The theorem below
established the periodicity of tropical matrix powers.

Theorem 1. [3] if a ∈ Mk(Zmax) and a is irreducible then the sequence of matrix a⊗n

(for n ∈ N) is eventually periodic with period γ(a) and ratio λ(a).

Proof. Perron-Frobenius theorem states that if a ∈ Mk(Zmax) and a is irreducible, there
exists a unique eigen value λ(a) such that

a ⊗ v = λ ⊗ v

for k ≥ N and some eigenvector v.
The eigenvalue λ(a) is related to the cycles in the graph representation of a from maximum
cycle mean, thus;

λ(a) = maxσ µ(σ, a) = ω(σ,a)
l(σ)

where σ denotes a cycle in the graph of a. Thus, the length of the cycles of the graph of a
is the period γ(a) and the matrix power a⊗n is the walk of length n in the graph.
considering the properties of the max-plus algebra and irreducible matrices, it can be
shown that there exists N such that for all n ≥ N

a⊗(n+γ(a)) = λ(a)γ(a) ⊗ a⊗n

Hence, a⊗n is eventually periodic with period γ(a) and ratio λ(a) due to the eigenvalue
and irreducibility.

Sergeev, S. [18] expressed that the theorem can be written in form of CSR expansion,
i.e., there exist non-negative integer T such that ∀t ≥ T : a⊗t = λ⊗t ⊗ CStR where C, S
and R are matrices defined in terms of a.

For example, if X is a tropical matrix, the powers of X displays periodicity for instance,
if

X=




5 9 −2
−5 −1 9
0 2 −2




is a tropical matrix, each successive element of the power of X from n = 2 to n = 7 differs
by a linear factor 5, 6 or 7 from the previous element and the pattern repeats after every
third power, resulting in ρ = 3 and the defect δ = 3. The relation can leak information to
an attacker on how to recover the matrix key as shown by [1], but in the proposed scheme

if X=




2 5 4
3 6 7
2 7 5


 , N=




7 3 5
8 1 3
9 2 4


 we have X⊗N =




99 19 41
132 29 61
115 23 51


 which does not

show any pattern of tropical power of matrices that can leak information to an attacker.

Moreover, assuming an attacker possessed the published keys X1, X2, and B, he/she
is expected to find Y1, Y2 or Z1, Z2 in Mk(Zmin) such that B = (X⊗Y1

1 ⊗ X⊗Y2
2 ) ⊗ V or

D = (X⊗Z1
1 ⊗ X⊗Z2

2 ) ⊗ V to attack the scheme. Similarly, given some matrices, the matrix
power function (MPF) is a one-way function and the solution to this type of equation is
not feasible from the literature we have reviewed [5].
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4.2.1 Linear attack

The proposed scheme is free from linear attack. Consider the equation below which is the
tropical form of the classical linear attack as in (2).

X1 ⊗ X = X ⊗ X1

X2 ⊗ Y = Y ⊗ X2

X ⊗ Y = U

(5)

equation (5) does not translate into a system of linear equations if U , X1, and X2 are
known and X, Y are unknown. Moreover, there is no efficient algorithm to solve a system
of linear equations in this form [8, 5]. Consider the public matrix U = B shared by Salima
as in the proposed scheme, that is

B=




171 172 175
166 174 172
169 177 167




To solve (5), an attacker needs to find the following;

X = B ⊗ Y ⊗−1.

The inverse of Y can not be obtained in tropical semiring. In other words, the equation
does not translate into a system of linear equations. Thus, X and Y can not be found
such that XDY = K is the shared secret key, where D is the public key of Salim.

Proposition 2. The proposed scheme is free from linear attack.

Proof. Let X1, X2, U be in Mk(Zmin).
Then, X1, X2 and U are not invertible due to the structure of Mk(Zmin), the tropical
matrices in tropical semiring. The only invertible matrices are diagonal matrices and
generalised permutation matrices. Thus, the system (5) is not solvable in Mk(Zmin), since

X = U ⊗ Y ⊗−1

is not obtainable in Mk(Zmin) if Y is not invertible.
Thus, the proposed scheme is free from linear attack.

4.2.2 Kotov and Ushakov attack

In Shpilrain’s tropical key exchange, the private keys are polynomials p1(x), p2(x) and
the public keys are matrices a, B, U and V . Generally tropical polynomial is given by
P (x) = ⊕d

i=1ai ⊗ x⊗i, from the polynomial p(a) = ⊕d
i=1ai ⊗ a⊗i which is used in the

cryptographic process of the scheme to compute Ka. In Kotov and Oshakov attack, they
try to write (5) by writing X = ⊕D

i=1ai ⊗ a⊗i and Y = ⊕d
j=1bj ⊗ B⊗j in polynomial form,

where i and j are chosen and defined from the degree d of the polynomial p(x). In the
attack, D was assumed to be a bigger number than the maximal degree of any tropical
polynomial that could be used by the sender and receiver. It is clear from the proposed
scheme that the tropical polynomial was not used in the scheme. Thus, the Kotov and
Oshakov attack could not be easily applied to the proposed scheme.
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4.2.3 Brute force attack

In terms of brute force attack, the proposed scheme has Y1, Y2, Q ∈ CMk(Zmin) which
are randomly chosen private keys, unlike the original scheme that has only two natural
numbers m and n. Thus, it takes time for an attacker to find all possible combinations of
private keys. assuming k ≥ 10 and elements of the matrices are randomly chosen between
[1, 1000]. Thus, it takes time to find the possible combinations of the private keys as
described by [8].
If a k × k matrix with k = 10 is used in the proposed scheme and its elements are chosen
between [1, 1000]. The total number of different matrices can be formed in 1000k2. The
complexity is O(1000k2). For k = 10, the complexity is 1000100, which is an astronomically
large number. Thus, guessing the secret key K by brute force is computationally infeasible
especially if k is large.

4.2.4 Comparison Between the Existing and Proposed Schemes

Table 4: Comparison between Existing and Proposed Schemes
S.No. Stickel’s Key exchange Tropical Key exchange Scheme Proposed Key exchange Scheme
1. private keys are natural numbers Private keys are polynomials Private keys are matrices
2. Computations on classical algebra Tropical semiring Tropical semiring
3. Difficulty relies on DLP Tropical semiring problem (TSP) TSP and matrix power function problem
4. Polynomial version was used to improve the scheme Exponential version
5. Tropical matrices Periodicity of tropical matrices powers No matrix powers
6. Linear attack Linear attack due to the polynomial Free from linear attack

The table above shows the comparison between the three schemes, and the advantages of
the proposed scheme against the original Stickel’s scheme and tropical schemes.

5 Some Properties of The Structures Used in The Proposed
Scheme

Below are some of the observed and derived propositions and corollaries as well as their
proofs in tropical matrix algebra.

Proposition 3. If a, B ∈ CMk(Zmin) then a ⊗ B ∈ CMk(Zmin).

Proof. Let a = ai = (a0, a1, . . . , an) and B = bj = (b0, b1, . . . , bn), thus, (a ⊗B)ij =
⊕n

k=1(aik ⊗ bkj) = min(aik + bkj). Since a and B are circulant matrices, each row and
column of a and B is a cyclic permutation of the row and column above it.

Let (i, j)th elements of (a ⊗ B)ij = ⊕n
(i,j)=1(ai ⊗ Bj) = min(ai + Bj) where ai is the

ith row of a and Bj is the jth column of B. By the properties of a and B, each row ai is
a cyclic permutation of first row a0 and each column Bj is a cyclic permutation of the
first column B0.Thus,

ai = a0 cyclically shifted by i positions
Bj = B0 cyclically shifted by j positions

Therefore, (i, j)th elements of a ⊗ B = ⊕n
(i,j)=1(ai ⊗ Bj) = min[(a0 cyclically shifted

by i positions)+(B0 cyclically shifted by j positions)]. The sum will also be a cyclic
permutation of a0 + B0. Thus, (a ⊗ B)ij = min(a0 + B0). This shows a ⊗ B has constant
values in each row, thus, it is circulant.
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Proposition 4. Let a ∈ Mk(Zmin) and B ∈ CMk(Zmin) then a ⊗ B /∈ CMk(Zmin).

Proof. Let a =




m1 m2 m3
m4 m5 m6
m7 m7 m8


, B =




m1 m2 m3
m3 m1 m2
m2 m3 m1


 and C = a⊗B =




c11 c12 c13
c21 c22 c23
c31 c32 c33




where mi, i = [1, n] are not equal. From the definition of tropical multiplication, we
have Cij = (a ⊗ B)ij = ⊕n

k=1(aik ⊗ bkj) = min(aik + bkj). Now,

c11 = min(m1 + m1, m2 + m3, m3 + m2)
c22 = min(m4 + m2, m5 + m1, m6 + m3)
c33 = min(m7 + m3, m8 + m2, m9 + m1)

to show that a ⊗ B /∈ CMk(Zmin), it is sufficient to show that c11 ̸= c22 ≠ c33., since the
diagonal entries of any circulant matrix are equal. From the above expressions of c11, c22
and c33 it is clear that they are not equal, therefore, a ⊗ B /∈ CMk(Zmin).

Proposition 4 holds for B ⊗ a which is the special case of the proposition, thus, yields
the corollary below.

Corollary 1. Let a ∈ Mk(Zmin) and B ∈ CMk(Zmin) then B ⊗ a /∈ CMk(Zmin).

Proposition 5. if a, B ∈ Mk(Zmin) and a⊗B is matrix power function, then (a−1)⊗B

will result to additive identity matrix (∞) of Mk(Zmin), provided that the entry element
of a and B are greater than 1 and a is invertible in Mk(Zmin).

Proof. Let a =




a11 a12 . . . a1n

a21 a22 . . . a2n

...
...

...
an1 an2 . . . ann


 and B =




b11 b12 . . . b1n

b21 b22 . . . b2n

...
...

...
bn1 bn2 . . . bnn




then

a−1 =




−a11 ∞ . . . ∞
∞ −a22 . . . ∞
...

...
...

∞ ∞ . . . −ann


 and

a−1⊗B =




−a11 ∞ . . . ∞
∞ −a22 . . . ∞
...

...
...

∞ ∞ . . . −ann




⊗




b11 b12 . . . b1n

b21 b22 . . . b2n

...
...

...
bn1 bn2 . . . bnn




=




−ab11
11 ⊗ ∞b21 ⊗ . . . ⊗ ∞bn1 −ab12

11 ⊗ ∞b22 ⊗ . . . ⊗ ∞bn2 . . . −ab1n
11 ⊗ ∞b2n ⊗ . . . ⊗ ∞bnn

∞b11 ⊗ −ab21
22 ⊗ . . . ⊗ ∞bn1 ∞b12 ⊗ −ab22

22 ⊗ . . . ⊗ ∞bn2 . . . −∞b1n ⊗ −ab2n
22 ⊗ . . . ⊗ ∞bnn

...
...

...
∞b11 ⊗ ∞b21 ⊗ . . . ⊗ −abn1

nn . . . ∞b12 ⊗ ∞b22 ⊗ . . . ⊗ −abn2
nn . . . ∞b1n ⊗ ∞b2n ⊗ . . . ⊗ −abnn

nn




=




−a11b11 + ∞ + . . . + ∞ −a11b12 + ∞ + . . . + ∞ . . . −a11b1n + ∞ + . . . + ∞
∞ − a22b21 + . . . + ∞ ∞ − a22b22 + . . . + ∞ ∞ − ab2n

22 + . . . + ∞
...

...
...

∞ + ∞ + . . . − annbn1 ∞ + ∞ + . . . − annbnn . . . ∞ + ∞ + . . . − annbnn




Since,
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∞m = ∞ for all m > 1
∞ ± m = ∞

∞ × ±m = ±∞ if m ̸= 0
m∞ = ∞ if m > 1

Thus, by the definition of ⊗ on tropical semiring we have (a−1)⊗B =




∞ ∞ . . . ∞
∞ ∞ . . . ∞
...

...
...

∞ ∞ . . . ∞




as claimed since the entry elements of a and B are greater than 1.

The corollary below is a special case of proposition 5.

Corollary 2. if a, B ∈ Mk(Zmin) and a⊗B is matrix power function, then (a)⊗B−1 will
result to additive identity matrix (∞) of Mk(Zmin), provided that the entry element of a
and B are greater than 1 and B is invertible in Mk(Zmin).

6 Conclusions
Stickel’s scheme was built upon a non-commutative structure using a matrix group as a
platform. Tropical algebra was used as a platform to protect the scheme from linear attack
and to improve its efficiency as tropical platforms play an important role in providing
efficiency and less vulnerability to linear attack but the pattern displayed by the higher
power of matrices (i.e., the number of operations executed to obtain the public key)
makes tropical platforms susceptible to certain attacks. The improved scheme that was
constructed using the matrix power function on a tropical semiring reduces the leakage of
displaying patterns because matrices are replaced by natural numbers. Some properties of
tropical matrices and tropical power functions were discovered. However, interested readers
are implored to suggest possible ways of improving the security of the proposed scheme,
as it is the trend for cryptographic protocols. There is often room for improvement. We
suggest the use of matrix power function with other special forms of matrices on tropical
semiring.
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Abstract. This paper addresses the challenge of securely outsourcing a trained
model to a server while preserving both the model owner’s and the data owner’s
privacy. Previous works usually use public key cryptosystems such as homomorphic
encryption or zero-knowledge proofs, which are usually considered to be inefficient with
heavy computations. Inspired from Chang et. al.‘s work which only use lightweight
cryptosystem (ie., secret sharing), we introduce two new algorithms based on their
original schemes. We will show how to further improve the efficiency of their schemes
without sacrifice the security of the schemes.
Keywords: Beaver triple, secure comparison, decision tree classification, outsourcing,
privacy preserving, secret sharing

1 Introduction
In today’s rapidly advancing technological landscape, the proliferation of data and the
need for efficient data analysis tools have given rise to significant advancements in machine
learning and artificial intelligence. Decision tree learning [13, 5] is a type of analytical
model used for making decisions and predicting outcomes. They are particularly useful
because they allow users to visually explore data, making it easier to understand the
relationships between different variables. The breakdown of the key concepts related to
decision trees are as follows:

• Hierarchical Classification Structures: Decision trees are hierarchical, meaning they
start with a broad decision at the "root" and branch out into more specific decisions,
ultimately leading to a final outcome or classification at the "leaves."

• Independent and Dependent Variables: In decision trees, independent variables (also
called attributes) are the factors that influence the outcome. The dependent variable
(or class) is what you’re trying to predict or classify.

• Nodes and Branches:

– Root: The topmost node in a decision tree, where the first decision is made.
– Nodes: These can be either:

∗ Decision Nodes: Points in the tree where a decision is made based on a
test applied to one of the independent variables. This divides the data into
smaller subsets.

∗ Terminal Nodes (Leaves): The end points of the tree, representing the final
classification or decision.

– Branches: Paths that connect the nodes, representing the sequence of decisions
made based on the attributes.
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Figure 1: Example of a simple decision tree [13]

Algorithms based on tree structures are among the most popular methods in supervised
learning due to their high accuracy and stability in generating predictive models. For
instance, Classification and Regression Trees (CART) [10, 8] is a notable technique in this
domain. This approach provides a clear and understandable way to visualize decision-
making processes, making it a valuable tool for predictive analytics.

However, with the increasing reliance on cloud computing for storing and processing
large-scale data, ensuring the privacy and security of sensitive information has become a
paramount concern. For example, a significant challenge is outsourcing pre-trained models
to servers while preserving model privacy [9]. Moreover, protecting data privacy from
the server’s perspective is equally crucial. Most current solutions rely on homomorphic
encryption [14, 2] or zero knowledge proofs [1], which is often inefficient and unsuitable for
IoT devices with limited computational capabilities. Recently, Chang et al. [3, 4] proposed
a privacy-preserving method for decision tree classification. Their primary strategy involves
using secret-sharing [12] between the model owner, the service user (data owner), and the
cloud server. This approach facilitates secure comparison computations without revealing
the model or the data. The cryptographic method they utilized involves lightweight
secret-sharing, offering a more efficient alternative to more resource-intensive methods like
homomorphic encryption. This makes it better suited for IoT environments that have
lower storage and communication capabilities.

1.1 Motivation and Our Contribution
The motivation behind this research is driven by the growing need for secure and efficient
methods to outsource machine learning models in the era of cloud computing and IoT.
As organizations increasingly leverage cloud services to store and analyze data, the
risk of exposing sensitive information to unauthorized parties escalates. Ensuring the
confidentiality of both the model and the data during the outsourcing process is critical
to maintaining trust and compliance with privacy regulations. Current solutions that
rely on homomorphic encryption or zero-knowledge proofs, while secure, are not practical
for widespread use due to their high computational demands. This inefficiency poses
a significant barrier to the adoption of secure cloud-based machine learning services,
particularly in environments with limited computational power.

To address these challenges, this paper introduces improved privacy-preserving decision
tree classifiers based on secret sharing. Inspired by the work of Chang et al., which utilizes
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lightweight cryptographic techniques, we propose two novel algorithms that enhance the
efficiency of their schemes without compromising security. Our approach is particularly
well-suited for IoT environments, where computational resources and communication
capabilities are limited.

The technical details are explained as follows: Considering a model M structured as a
tree, the objectives of the model owner are twofold: (1) to issue a token to a user, allowing
them access to enjoy model M, and (2) to provide some limited information about model M.
To maintain the privacy of M, we employ secret sharing techniques. This involves splitting
each node in the tree into two shares. One share is given to the user, while the other is
retained by the server. On the other hand, data owner also splits his/her data into shares
and gives half of the shares to the server. This method ensures that a decision (of the
decision three) can be made based on the shares of the model and the data without leaking
the information of model (ie., attribute or feature of the model) as well as the information
of the data of the data owner. In other words, based on the secure computation between
the data owner and the server , a decision can be made while the privacy of the model as
well as the data are securely preserved at the end of our protocols. Our second algorithm
further guarantees that the secrecy of the data is still preserved even if the model owner
and the server collude, leading to the server knowing the information (i.e., features or
attributes) of a model.

2 Building Blocks
2.1 Pseudorandom Generator (PRG)
PRG is a fundamental concept in cryptography and computer science, used to generate
sequences of numbers that appear random but are actually computed from a deterministic
process. PRGs are crucial for various applications including cryptography, simulations,
and randomized algorithms.

2.2 2-out-of-2 Secret Sharing
Secret sharing is a procedure for distributing a secret between a group of participants,
each of whom is allocated a share of the secret. The secret can be recovered only when a
sufficient number of shares of the secret. In this paper, only 2-out-of-2 secret sharing is
used in our proposal. The security guarantees that only one out of two shares does not
reveal the secret.

• Preparation Phase (offline): SS(x) → [x]1, [x]2: A Dealer plits a secret x into two
shares [x]1, [x]2 where x, [x]1, [x]2 ∈ Z∗

q . Here q is a large prime. Then, [x]i is sent to
a participant Ui, 1 ≤ i ≤ 2.

• Computation Phase (offline): SS
′(x, [x]b) → [x]b̄ on input of x, [x]b ∈ Z∗

q . It is an
alternative protocol of SS(x) which allows a participant to split his/her secret x into
[x]1, [x]2 ∈ Z∗

q . He/She holds, [x]b and sends [x]b̄ to the other participant. In other
words, this phase can be done without a dealer’s assistant.

• Recovery Phase (online): Recover([x]1, [x]2) → x: Obtain x from [x]1, [x]2. With the
joint work by the two participants, each presents his/her share [x]1, [x]2, respectively,
then the original secret x ∈ Z∗

q can be recovered.

2.3 Beaver Triples
Beaver triples [11] are a cryptographic tool used in secure multiparty computation (MPC),
a type of cryptographic protocol that allows multiple parties to jointly compute a function
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over their inputs while keeping those inputs private. The main purpose of Beaver’s Triples is
to facilitate secure and efficient multiplication of shared secrets, which is a challenging and
critical operation in secure multiparty computation. In many MPC schemes, additions and
multiplications are the primary operations needed to construct more complex computations.
While addition of secret shares is relatively straightforward, multiplication introduces
complexity because it can potentially leak information about the inputs.

• Preparation Phase (offline): Before the actual computation begins, a trusted third
party or a distributed protocol generates triple of number (a, b, c) where a and b are
random and c = a × b. These values are then secretly distributed among the parties
in such a way that no single party knows all of a, b, and c, but rather only holds a
“share” of each.

• Computation Phase (online): When the parties need to compute the product of two
shared secret, say x and y, they use the pre-distributed triples. Each party calculates
the differences between their shares of x and a, and y and b, respectively, and these
differences are made public. Since a and b are random and unknown to all parties,
revealing these differences does not compromise the security of x and y.

• Using the Triples: Once the differences are known, each party can compute a share
of xy using the equation:

xy = c + (x − a)b + (y − b)a + (x − a)(y − b)

Here, c is the precomputed product of a and b, and the terms involving x − a and
y − b are known from the previous step. Each party then adjusts their share of c using the
additional terms to get a share of the product xy.

The use of Beaver’s triples significantly reduces the complexity and improves the
security of performing multiplications in a distributed manner, making secure multiparty
computation more feasible for practical applications.

3 Revisit of Chang et. al.’s Privacy-preserving Scheme
Chang et. al. introduced a privacy-preserving delegation of decision tree classification
protocol in 2020 [3, 4]. The scheme allows the model owner to outsource the classification
service to cloud server without leaking the content of the model. The cloud server is
responsible for storing the model and providing classification services for potential users.
The confidentiality of both input and output of the service is also maintained during
the classification protocol. In addition, the data belonging to the model owner is also
considered as sensitive information and will not be disclosed during the executing of the
protocol. Their scheme utilizes secret sharing as well as the Beaver triples instead of
homomorphic cryptosystems in order to improve the efficiency.

Their scheme consists of three entities: model owner (MO), Service User (SU) and
Cloud Server (CS).

• The Model Owner (MO), who has the decision tree classification model M.MO
performs classification work using M where M must be preserved without leaking
the information of M . Here M is protected by the 2-out-of-2 secret sharing.

• Service User (SU): SU is the machine learning service user possessing the source
data D.SU desires to predict the class of D using the model M without leaking any
information on D.
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• Cloud Server (CS): CS is assumed to have sufficient storage space and computation
power. The purpose of CS is to store the share of model [M ] and respond to queries
from SU during the process of classification service. In short, CS and SU in this
protocol is in cooperate with each other to find the final classification result without
knowing the model [M ] and CS doesn’t know the data D.

Algorithm 1 Comparison Algorithm I
1: Input A: x, [x]1, [y]1 /* A is the Service User (SU)
2: Input B: [x]2, [y]2 /* B is the Cloud Server (CS)
3: Output B: 1 if (x > y) or 0 if (x ≤ y)
4: Process of A:
5: Randomly picks α ∈ Z∗

q where x + a < q, and y + a < q.
6: Executes SS(α) → [α]1, [α]2.
7: Sends[α]2 to B.
8: Computes [s]1 = [x]1 + [α]1, and [h]1 = [y]1 + [α]1.
9: Process of B:

10: Computes [s]2 = [x]2 + [α]2 and [h]2 = [y]2 + [α]2.
11: Process of A:
12: Send [s]1 and [h]1 to B.
13: Process of B:
14: Executes Recover([s]1, [s]2) → s.
15: Executes Recover([h]1, [h]2) → h.
16: Outputs 1 if s > h, and 0 otherwise.
17: Sends comparison result (ie.,1 or 0) to A.

Algorithm 1 is a secure comparison protocol in a two-party setting. In this algorithm,
the model information y (in the application of a decision tree, y can be a vector y =
(y1, y2, . . . , yn) where each yi represent a value of a corresponding node) is divided by the
model owner MO at the beginning and the corresponding shares of y is [y]1, [y]2. At the
initial phase, A possesses the plaintext of x, [x]1, [y]1 and shares the value [x]2 with B. B
also has the share [y]2 received from MO. With this algorithm, A and B can compare two
shared values without knowledge of y, and B does not know the value of the data x. At
the end, when B sends the comparison result to A, then both entities can proceed to the
next step for the comparison of the next layer of the decision tree.

Instead of Algorithm 1, Chen et. al. also proposed a relatively complexed version [3]
which combines a Beaver triple with the secret sharing scheme to do the same comparison.
The detailed algorithm is described in Algorithm 2 and Algorithm 3.

In Algorithm 1, s = x + α and h = y + α. So s − h = x − y. x > y if s − h > 0.
Otherwise, x ≤ y. On the other hand, in Algorithm 2, s = zr1 + r2 = (x − y + ℓ)r1 + r2,
and h = ℓr1 + r2. So s − h = (x − y)r1. The same as Algorithm 1, if s − h > 0, then x > y.
Otherwise, x ≤ y. Algorithm 2 further guarantees that the disclosure of x will not harm
the secrecy of y, and vice versa because of the random value r1 is unknown to B.

4 Proposed Schemes
Before formally introducing out new schemes, we first loosen the requirement of the
underlying secret sharing scheme. That is, we here choose random values from integer
domain Z instead of chosen from Z∗

q . This implies that each share may be a positive
integer or an negative integer. Details is described below:

• Preparation Phase (offline): SS(x) → [x]1, [x]2: A Dealer splits a secret x into
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Algorithm 2 Comparison Algorithm II
1: Input A: x, [x]1, [y]1 where x, y ≤ ℓ /* A is the Service User (SU)
2: Input B: [x]2, [y]2 where x, y ≤ ℓ /* B is the Cloud Server (CS)
3: Output B: 1 if (x > y) or 0 if (x ≤ y)
4: A or B produces [ℓ]1, [ℓ]2.
5: A generates [z]1 = [x]1 − [y]1 + [ℓ]1.
6: B generates [z]2 = [x]2 − [y]2 + [ℓ]2.
7: A picks two positive integers r1, r2 where 2ℓr1 + r2 < q.
8: A generates [r1]1, [r1]2, [r2]1, [r2]]2.
9: By utilizing the Beaver triple algorithm (Algorithm 3), A and B perform the following

steps:
10: A computes [s]1 = [zr1 + r2]1, and [h]1 = [ℓr1 + r2]1.
11: B computes [s]2 = [zr1 + r2]2, and [h]2 = [ℓr1 + r2]2.
12: A Send [s]1 and [h]1 to B.
13: B reconstructs s and h.
14: B outputs 1 if s > h, and 0 otherwise.
15: B sends comparison result (ie., 1 or 0) to A.

Algorithm 3 Multiplication Algorithm (Beaver Triple)
1: Input A: x, [x]1, [y]1
2: Input B: [x]2, [y]2
3: Output A: [xy]1
4: Output B: [xy]2
5: A gets three shares [a]1, [b]1, [ab]1 from MO.
6: B gets three shares [a]2, [b]2, [ab]2 from MO.
7: A sends [x]1 − [a]1 to B.
8: B sends [x]2 − [a]2 to A.
9: A or B produces ε = x − a, individually.

10: A sends [y]1 − [b]1 to B.
11: B sends [y]2 − [b]2 to A.
12: A or B produces ρ = y − b, individually.
13: A computes [xy]1 as [xy]1 = [ab]1 + ε[b]1 + ρ[a]1 + ερ.
14: B computes [xy]2 as [xy]2 = [ab]2 + ε[b]2 + ρ[a]2 + ερ.
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two shares [x]1, [x]2 where x is a positive integer, and [x]1, [x]2 ∈ Z, such that
x = [x]1 + [x]2. Then, [x]i is sent to a participant Ui, 1 ≤ i ≤ 2.

• Computation Phase (offline): SS
′(x, [x]b̄) → [x]b̄ Output [x]b̄ ∈ Z, on input of

x, [x]b.It is an alternative protocol of SS(x) which allows a participant to split
his/her secret x into [x]1, [x]2. He/She holds, [x]b and sends [x]b̄ to the other
participant. In other words, this phase can be done without a dealer’s assistant.

• Recovery Phase (online):Recover ([x]1, [x]2) → x: Obtain x from [x]1, [x]2. With the
joint work by the two participants, each presents his/her share [x]1, [x]2, respectively,
then the original secret s can be recovered.

4.1 New Algorithm 1 for Secure Comparison

Algorithm 4 Comparison Algorithm I∗

1: Input A: x, [x]1, [y]1 /* A is the Service User (SU)
2: Input B: [y]2 /* B is the Cloud Server (CS)
3: Output B: 1 if (x > y) or 0 if (x ≤ y)
4: Process of A:
5: Randomly picks α ∈ Z.
6: Computes [s]1 = [x]1 + [y]1 + α ∈ Z, and [s]′

2 = [x]2 − α ∈ Z.
7: Sends [s]1 and [s]′

2 to B.
8: Process of B:
9: Computes [s]2 = [s]′

2 − [y]2.
10: Executes Recover([s]1, [s]2) → s.
11: Outputs 1 if s > 0, and outputs 0 otherwise.
12: Sends comparison result (ie., 1 or 0) to A.

4.2 New Algorithm 2 for Secure Comparison

Algorithm 5 Comparison Algorithm II∗

1: Input A: x, [x]1, [y]1 /* A is the Service User (SU)
2: Input B: [x]2, [y]2 /* B is the Cloud Server (CS)
3: Output B: 1 if (x > y) or 0 if (x ≤ y)
4: A produces [ℓ]1, [ℓ]2 ∈ Z where ℓ = [ℓ]1 + [ℓ]2 ∈ Z+. A then sends [ℓ]2 to B.
5: A generates [x − y]1 = [x]1 − [y]1.
6: B generates [x − y]2 = [x]2 − [y]2.
7: By utilizing the Beaver triple algorithm (Algorithm 3), A and B perform the following

steps in an interactive way:
8: A computes [s]1 = [(x − y)ℓ]1.
9: B computes [s]2 = [(x − y)ℓ]2.

10: A sends [s]1 to B.
11: B reconstructs s = (x − y)ℓ.
12: B outputs 1 if s > 0, and 0 otherwise.
13: B sends comparison result (ie., 1 or 0) to A.

Comparing with the New Algorithm 1, our New Algorithm 2 is more secure since the
data x remains secret even if the server knows y. This is because that the server B only
knows s = (x − y)ℓ at the end without the knowledge of x and ℓ even if y is revealed.
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4.3 Toy Examples
For easy to understand and to show the correctness, we give some toy examples for the
proposed New Algorithm 1, and New Algorithm 2, respectively. Examples are given
between the symbols /∗ . . .∗ /.

Example for Algorithm I*:

Algorithm 6 Example of Comparison Algorithm I∗

1: Input A: x, [x]1, [y]1 /∗x = 15, [x]1 = 5, [x]2 = 10, [y]1 = 7 ∗/
2: Input B: [y]2 /∗[y]2 = −3 ∗/
3: Output B: 1 if (x > y) or 0 if (x ≤ y) /∗ output 1 cause x = 15, y = 4, and x > y ∗/
4: Process of A:
5: Randomly picks α ∈ Z. /∗α = 8 ∗/
6: Computes [s]1 = [x]1 + [y]1 + α ∈ Z, and [s]′

2 = [x]2 − α ∈ Z. /∗[s]1 = 5 − 7 + 8 =
6, [s]′

2 = 10 − 8 = 2 ∗/
7: Sends [s]1 and [s]′

2 to B. /∗[s]1 = 6, [s]′
2 = 2 ∗/

8: Process of B:
9: Computes [s]2 = [s]′

2 − [y]2. /∗[s]2 = 2 − (−3) = 5 ∗/
10: Executes Recover([s]1, [s]2) → s. /∗([s]1 = 6, [s]2 = 5) → s = 11 ∗/
11: Outputs 1 if s > 0, and outputs 0 otherwise.
12: Sends comparison result (ie., 1 or 0) to A.

We can see from the example that s = 11 = 15 − 4 = x − y. So the output of New
Algorithm 1 is correct.

Example for Algorithm II*:

Algorithm 7 Comparison Algorithm II∗

1: Input A: x, [x]1, [y]1 /∗x = 15, [x]1 = 5, [y]1 = 7 ∗/
2: Input B: [x]2, [y]2 /∗[x]2 = 10, [y]2 = −3 ∗/
3: Output B: 1 if (x > y) or 0 if (x ≤ y) /∗ output 1 cause x = 15, y = 4, and x > y ∗/
4: A produces [ℓ]1, [ℓ]2 ∈ Z where ℓ = [ℓ]1 + [ℓ]2 ∈ Z+. A then sends [ℓ]2 to B. /∗ℓ =

[ℓ]1 + [ℓ]2 = 3 + 6 ∗/
5: A generates [x − y]1 = [x]1 − [y]1. /∗[x − y]1 = [x]1 − [y]1 = 5 − 7 = −2 ∗/
6: B generates [x − y]2 = [x]2 − [y]2. /∗[x − y]2 = [x]2 − [y]2 = 10 − (−3) = 13 ∗/
7: By utilizing the Beaver triple algorithm (Algorithm 3), A and B perform the following

steps in an interactive way:
8: A computes [s]1 = [(x − y)ℓ]1. /∗[s]1 = 65 via the Beaver triple ∗/
9: B computes [s]2 = [(x − y)ℓ]2. /∗[s]2 = 34 via the Beaver triple ∗/

10: A sends [s]1 to B. /∗[s]1 = 65 ∗/
11: B reconstructs s = (x − y)ℓ. /∗s = 11 ∗ 9 = 99 ∗/
12: B outputs 1 if s > 0, and 0 otherwise.
13: B sends comparison result (ie., 1 or 0) to A.

4.4 Actual Working Example and Its Implementation
With the knowledge of our new algorithms as well as the toy examples, we now give an
actual working example of corrosion prediction based on a decision tree [7], and show how
it can be done by our New Algorithm 1 to protect the sensitive data for the data owner
and for the model owner, respectively.

In Fig. 2, the tree includes attributes such as: Depth Under the Sea Surface, Type of
Stainless Steel Alloy, Exposure Time to Seawater, Maximum Depth of Pitting, and Depth
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Figure 2: A decision tree for corrosion prediction [6]

of Crevice Formation. The class variable (what the data owner are predicting) could be
the level of corrosion (ie., Low, Medium, or High). When classifying a new observation
(for example, a stainless steel sample with specific characteristics), it start at the root of
the tree (e.g., Maximum Pit Depth) and follow the branches based on the observation’s
attributes until it reach a terminal node. For example, if a sample has a Maximum Pit
Depth of 120mm, a Depth Beneath Surface of 1400m, and an Exposure Time of 100 days,
the decision tree will then classify it as having a Low level of corrosion.

We now implement this decision tree in Java language using our New Algorithm 1
for secure computation. In this implementation, the model owner has all the numbers of
attributes or features of the tree (denotes as y) and a data owner (ie., the service user)
with secret input x, desires to predict the level of corrosion of x (ie., the class of x) using
the model without leaking x. Here h denotes the height of the tree, Fig. 3 is the source
code of our New Algorithm 1, Fig. 4 is the detailed information of Input A (ie., x) and
Input B (ie., y), respectively as well as the corresponding shares, and Fig. 5 is the output
of the decision tree in each round (eg., 3 rounds if h = 3 ).

The label at that terminal node (e.g., Low corrosion) becomes the predicted outcome
for this input x = (120, 1000, 70).

5 Threat Model and Security Reductions

5.1 Threat Model

The definition of threat model follows Chang et. al.’s definition. That is, we here assume
that all the entities are semi-honest. In other words, they are curious-but-honest adversaries
that would strictly follow the protocol on one hand, but they are also interested in all data
and attempt to learn more information during the execution of the protocol.

Based on the semi-honest adversary model, two security goals are defined: Model
Secrecy:It is required that the Service User (SU) and Cloud server (CS) learns nothing
about the Model y.
Data Secrecy: It is required that the Model Owner (MO) and Cloud Server (CS) learns
nothing about the data x owned by the Service User (SU).
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Figure 3: Implementation of New Algorithm 1
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Figure 4: Information of input data x, model y and shares

5.2 Security Reductions
Chang et., al. have proved the security of their proposed schemes. We here use the
reduction techniques to show that our new schemes inherits the security requirements of
their schemes.

Firstly, for the model secrecy, since a model y is split into shares [y]1 and [y]2 using the
2-out-of-2 secret sharing before the execution of the protocol, the secrecy of y is preserved
if CS and SU do not collide with each other. We hereafter will only consider the data
secrecy against the Cloud Server (CS).

Theorem 1. (Data Secrecy of the New Algorithm 1): The new algorithm 1 preserves the
secrecy of the data against the internal adversary (ie., CS) if the data secrecy of Chang et.
al.’s algorithm 1 is preserved.

Proof. Let’s look at the view of CS in each scheme. In New Algorithm 1, the view of CS
is {[y]2, [s]1, [s]′

2}, where [s]1 = [(x − y)ℓ]1 and [s]2 = [x]2 − α. On the other hand, in their
original algorithm 1, the view of CS is {[x]2, [y]2, [s]1, [h]1, [s]2, [h]2} where [s]1 = [x]1 +[α]1,
[h]1 = [y]1 + [α]1, [s]2 = [x]2 + [α]2, and [h]2 = [y]2 + [α]2. We can always construct the CS
view of our new algorithm based on the view of their algorithm. That is, do the following
steps based on the view of their algorithm.

• Picks a random number α∗.

• Compute [s]∗1 = [s]1 = [h]1 + α∗.

• Compute [s]′∗
2 = [x]2 − α∗.
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Figure 5: Decision result of input based on Figure 4

Since [s]∗1 = [s]1 − [h]1 + α∗ = [x]1 − [y]1 + α − [y]1 − [α]1 + α∗ = [x]1 − [y]1 + α∗, and
[s]′∗

2 = [x]2 − α∗, we know that the CS of their algorithm can have the same view as the
CS of our new algorithm. Therefore, if any CS (ie., the internal adversary) who can break
the data secrecy of our new scheme, then we can use the adversary to break the data
secrecy of Chang et., al.’s scheme.

Theorem 2. (Data Secrecy of the New Algorithm 2): The new algorithm 2 preserves the
secrecy of the data against the internal adversary (ie., CS) if the data secrecy of Chang et.
al.’s algorithm 2 is preserved.

Proof. Let’s look at the view of CS in each scheme. In New Algorithm 2, the view of CS
is {[x]2, [y]2, [s]1, [s]2, [ℓ]2}, where [s]1 = [(x − y)ℓ]1 and [s]2 = [(x − y)ℓ]2. On the other
hand, in their original algorithm 2, the view of CS is {[x]2, [y]2, [z]2, [s]1, [h]1, [s]2, [h]2}
where [z]2 = [x]2 − [y]2 + [l]2, [s]1 = [zr1 + r2]1, [h]1 = [ℓr1 + r2]1, [s]2 = [zr1) + r2]2, and
[h]2 = [ℓr1 + r2]2 We can always construct the CS view of our new algorithm based on
the view of their algorithm. That is, do the following steps based on the view of their
algorithm.

• Compute s∗ = [s]1 + [s]2.

• Compute h∗ = [h]1 + [h]2.

• Compute [s]∗ − h∗ = (x − y)r1.

Since s∗ − h∗ = (x − y)r1 = [(x − y)r1]1 + [(x − y)r1]2 = [s]∗1 + [s]∗2 by the 2-out-of-2
secret sharing, and [(x − y)r1]2 (ie., [s]∗2) can be computed by the Beaver triple (ie.,
Algorithm 3) with B’s input {[(x − y)]2, [r1]2}. Here [(x − y)]2 = [x]2 − [y]2. In addition,
[s]∗1 = s∗−h∗−[(x−y)r1]2 = [(x−y)r1]1. So the view {[x]2, [y]2, [s]∗1, [s]∗2, [r]2} of CS of their
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algorithm is exactly the same as the view of CS our new algorithm {[x]2, [y]2, [s]1, [s]2, [ℓ]2}.
Therefore, if any CS (ie., the internal adversary) who can break the data secrecy of our
new scheme II, then we can use the adversary to break the data secrecy of Chang et., al.’s
scheme II.

5.3 Performance Comparison
Since our idea is inspired from Chang et. al. ‘s scheme, and the main purpose is to improve
the efficiency of their scheme without sacrifice the security. So we here only compare the
performance of our scheme with that of their scheme.

We here assume that each parameter consists of t bits. In their algorithm 1, and for
each comparison, the Service User A possessing the sensitive data needs to send three
parameters (ie., [x]2, [s]1 and [h]1) to the Cloud Server B, so totally 3t bits is transmitted
for one comparison. If the depth of the decision tree is d, then d times of comparison is
required so the communication cost will become 3dt bits. On the other hand, in our New
algorithm 1, and for each comparison, A needs to transmit only [s]1 and [s]′

2 to B which
consists 2t bits, so d rounds will cost 2dt bits for communication.

It is exactly in the same case for the comparison of our New Algorithm 2 with their
Algorithm 2. [x]2, [s]1 and [h]1 are transmitted from A to B for one comparison in their
scheme and only [x]2 and [s]1 are transmitted in our New Algorithm 2.

We omitted the comparison of computation cost since both schemes are based on simple
secret sharing schemes without heavy computation. However, we can also see that our
scheme is superior to their scheme even in the computation cost.

Figure 6: Performance Comparison

6 Conclusion
In this research article, we introduce two novel privacy-preserving decision tree evaluation
systems based on Chang et. al.’s schemes using secret sharing techniques. The advantages
of their scheme is the lightweight computation since no heavy computation is required
comparing with those using homomorphic encryptions. We improved their scheme by
efficiency without sacrifice the security. In these schemes, model owners can deploy their
decision tree models onto cloud servers, enabling them to offer classification services to
users of these cloud services. Our system ensures that no unauthorized parties gain access
to the model’s details. Additionally, it protects the confidentiality of users’ query data
and the results of their evaluations. Our proposed scheme enhances security for both the
model and user data, while also significantly reducing the communication burden on data
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owners, making it highly suitable for 5G and IoT environments. Our second algorithm
further guarantees that the secrecy of the data is still preserved even if the model owner
and the server collude, leading to the server knowing the information (i.e., features or
attributes) of a model. Finally, the constructions in the paper is not a generic construction
so it can only work for decision tree structures. Modification is required if it is used for
other models. It can be considered as part of our future work.
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Abstract. Cloud services and applications available anywhere in this modern era
have increased the demand of users to store data on the cloud, thereby requiring
encrypted storage to secure sensitive data. With encryption applied to the stored
data, advanced mechanisms for searching over encrypted data without decryption are
necessary to preserve data privacy, especially in scenarios where third-party cloud
service providers are involved. If the keywords used for searching data and the search
results are known by the cloud server, the user’s privacy may be leaked. Hence, a
searchable encryption scheme such as Public-key Authenticated Encryption with
Keyword Search (PAEKS) needs to be implemented for confidential searching without
decryption. In this paper, we upgrade the performance of a lightweight PAEKS
scheme that is secure against keyword guessing attacks by reconstructing the scheme
in Type-3 pairing. Subsequently, we benchmark the performance gained for the
lightweight PAEKS scheme using SS1024 and BN254 curves for Type-1 and Type-3
pairings, respectively.
Keywords: Public-key Authenticated Encryption with Keyword Search · lightweight
· Type-3 pairing · keyword guessing attack · multi-ciphertext indistinguishability

1 Introduction
In the current era, human daily life is bound tightly with the digital world, using technologies
to fulfil different needs, one of which is cloud computing. Storing data on the cloud can
save up local storage and provide ease of sharing with other users around the world,
however, cloud data is exposed to the risk of being compromised due to data breaches,
data interception, unauthorised access and other cybersecurity issues. Hence, data has
been transformed to an unreadable format through encryption before transferring over the
Internet to a cloud server and stored on cloud storage, thereby providing data confidentiality.
However, with the encryption applied to the data, searching for data is more troublesome.
The traditional searching method requires the decryption of data before performing a
search, this results in a data privacy breach to the third party who performs searching. In
the application of email service, a sender sends an email to a receiver through an email
server and stores the email on cloud storage. The receiver receives emails from multiple
senders, he or she may need to search an email content through a keyword of the email.
Not only for email applications, cloud storage such as Google Drive also provides search
functionality for data consumers to search for a shared file from data senders. To provide
confidentiality and efficiency, various techniques of data searching in encrypted form have
been invented such as Fully Homomorphic Encryption, Symmetric Searchable Encryption
and Asymmetric Searchable Encryption or Public-key Encryption with Keyword Search
(PEKS).



178
Lightweight and Privacy-Preserving Public-Key Authenticated Encryption with Keyword

Search using Type-3 Pairing

PEKS [4] is an asymmetric searchable encryption scheme that utilises public key
cryptography to perform search functionality. In PEKS, the cloud server will search
encrypted data without knowing anything about the keywords used to search and the
content of search results. Like public key cryptography, it involves the public key and private
key pair of receivers. Typically, three entities are involved in the system: sender, receiver,
and cloud server. The sender is the owner or creator of the message, and he or she will select
the keywords for the message. The receiver will request a search by providing a trapdoor
containing the keywords to be searched. After searching, the receiver will decrypt the results
to obtain the original message. In addition to storing the ciphertext of the message and
keywords, the cloud server also performs searches and returns the corresponding message
to the recipient. PEKS achieves ciphertext indistinguishability (CI) which is secure
against chosen-plaintext attack (CPA), where an attacker cannot distinguish between two
ciphertexts to reveal the keywords without knowing the corresponding trapdoor. However,
it suffers from keyword guessing attack (KGA). In addition, PEKS does not possess
trapdoor indistinguishability (TI), so an attacker can distinguish between two trapdoors
to determine whether they contain similar keywords.

There are two types of KGA which are inside KGA (IKGA) and outside KGA
(OKGA) [5], which is further divided into offline and online KGA. IKGA is performed by an
inside attacker who has access to the receiver’s trapdoor such as a cloud server. OKGA is
performed by an outsider who is an eavesdropper over the communication channel to steal
the trapdoor that is transmitted between the receiver and server. Due to the keywords
for searching being frequently used words and short in length, brute force attacks can
happen easily. An attacker has access to run all algorithms, except Trapdoor, as it needs
the private key of the receiver. The attacker can run the PEKS algorithm repeatedly to
generate ciphertexts for any keyword. Using the Test algorithm, the attacker can try to
input the generated ciphertexts and trapdoor from the receiver to guess which keyword
the receiver is searching for. If the Test algorithm outputs 1, the attacker will confirm the
keyword in the input ciphertext matching with the keyword contained in the receiver’s
trapdoor. Therefore, the success of KGA by the adversary is due to two reasons: (1) the
receiver’s trapdoor is accessible and (2) the Test algorithm is freely runnable. By knowing
the keywords that users are searching for, attackers can roughly guess the relevant content
in the message, leading to data breaches and privacy leaks.

To prevent IKGA, PAEKS [9] is one of the solutions. Its main difference from the
standard PEKS is it not only generates a key pair for receiver, but also for the sender.
This provides authentication property by requiring the private key of the sender when
performing the keyword encryption algorithm and requiring the sender’s public key when
performing the Trapdoor algorithm. This is to ensure only the private key holder which is
the sender will be allowed to run the keyword encryption algorithm, thereby preventing
any malicious party from freely generating the ciphertext of keywords to perform IKGA.
Even if they have access to the algorithm, the ciphertext generated is not authenticated.

Most of the PEKS and PAEKS achieve CI only in a single-challenge ciphertext setting,
where the adversary only needs to differentiate between ciphertexts of two single keywords
without knowing the trapdoors of both keywords. If taking into account real-life situations
where each message or file contains multiple keywords, two messages or files may have
some similar keywords, but the data owners do not want this information to be known by
any third party. To capture a chosen multi-keyword attack in which the adversary can
distinguish whether two encrypted data contain the same keywords, MCI [16] is needed.
Keyword searchable encryption scheme that achieves CI is still vulnerable to KGA because
an efficient algorithm is found to be able to distinguish two ciphertexts containing the
same keyword. With MCI, attackers cannot distinguish between ciphertexts of two sets of
keywords, therefore improving the security of the scheme.

Bilinear pairing is commonly used in PEKS but it requires heavy computational



Evon Yee-Ting Ng, Swee-Huay Heng, Syh-Yuan Tan and Koon-Ming Chan 179

Table 1: Comparison of Pu et al.’s Lightweight PAEKS Scheme with Pioneering Schemes.

Scheme PAEKS [9] PAEKS-MCI [16] Lightweight PAEKS [15]
Authentication ✓ ✓ ✓

IKGA ✓ ✓ ✓
OKGA ✗ ✗ ✗
MCI ✗ ✓ ✓
TI ✓ ✓ ✓

Pairing Operations 3 2 1
Assumptions DBDH, mDLIN CBDH, CDH q-ABDHE, CDH

Note: CBDH→Computational Bilinear Diffie-Hellman, CDH→Computational Diffie-
Hellman, DBDH→Decisional Bilinear Diffie-Hellman, mDLIN→Modified Decisional Linear,
q-ABDHE→Decisional Augmented Bilinear Diffie-Hellman Exponent

cost and time-consuming operations. This will be less favourable for implementation on
lightweight devices with less resources of computing power and storage space. Pu et al. [15]
have proposed a lightweight PAEKS scheme with MCI security model mainly designed
for Industrial Internet of Things (IIoT) devices with limited resources by improving the
algorithms in Type-1 pairing setting. This is achieved with precomputation of bilinear
pairing operation u = (g, g) during system initialisation and eliminates bilinear pairing
operations in PAEKS and Trapdoor algorithms. Its overall running time is lesser than its
pioneers, PAEKS [9] and PAEKS with MCI [16], as it only needs one pairing operation in
the Test algorithm while retaining the security features. Table 1 summarises the comparison
between Pu et al.’s PAEKS scheme and its predecessors, based on the supported security
model and the total number of pairing operations involved in the scheme algorithms. In
this paper, we describe Pu et al.’s lightweight PAEKS scheme in the Type-3 pairing setting
which is more efficient than Type-1 pairing, because Type-1 pairing normally takes a longer
time to execute and requires higher communication cost given the same security level with
Type-3 pairing.

1.1 Organisation of the Paper
This section outlines the structure of this paper. Section 2 covers a literature review of some
related existing PEKS and PAEKS schemes. Section 3 presents some preliminary concepts.
Section 4 presents Pu et al.’s original lightweight PAEKS scheme and our modified version
in Type-3 pairing. Section 5 provides a detailed performance analysis of the Type-1 and
Type-3 pairing PAEKS schemes. Lastly, Section 6 wraps up the discussions of this paper
and future work.

2 Related Work
Boneh et al. [4] first presented the PEKS scheme and was further enhanced by many
researchers. Rhee et al. [18] introduced PEKS with a designated tester to prevent entities
other than the specified server from running searching algorithms to prevent KGA. Chen
et al. [6] introduced the idea of dual-server-based PEKS in case only one server has full
searching capabilities. Park et al.’s [14] conjunctive keyword search with PEKS (PECK)
scheme allows multiple keywords search in one search query. Huang and Li [9] proposed
PAEKS scheme to prevent IKGA by adding a key pair for the sender during the generation
of keyword ciphertext to serve as an authentication feature over the ciphertext.
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Building upon the standard PAEKS scheme [9], various researchers have proposed
improvements to address its limitations and enhance security features. Noroozi and
Eslami [12] imrpoved Huang and Li’s PAEKS scheme with multiuser settings where the
privacy of each user should be maintained when several users have permission to search
for ciphertext. Li et al. [11] introduced designated-server identity-based authenticated
encryption with keyword search (dIBAEKS) which combines designated server testability
with PAEKS of identity-based variant to prevent offline KGA designed in Type-1 and
Type-3 pairing. Chenam and Ali [7] proposed a scheme named designated cloud server-
based multi-user certificateless authenticated encryption with conjunctive keyword search
(dmCLPAECKS) that eliminates the need for a secure channel to communicate between
designated server and receiver with designated server and multi-user settings. This scheme
also supports conjunctive keyword searches. Zhang et al. [23] proposed a new scheme,
designated server certificateless deniably authenticated encryption with keyword search
(dCLDAEKS) where the deniably authenticated encryption (DAE) technique enables the
data sender to deny their involvement after the communication. Zhang et al. [22] designed
an identity-based authorised searchable encryption scheme (IBASE) for electronic health
information systems.

Besides, researchers have also focused on enhancing the security models of CI and TI,
as well as enhancing overall performance efficiency of the scheme. Qin et al. [16] added
MCI security model on PAEKS to capture chosen multi-ciphertext attack. Pan and Li [13]
extended the work from Qin et al. to achieve Multi-Trapdoor Indistinguishability (MTI)
security along with MCI to prevent adversaries from performing frequency analysis over
the trapdoors with tuples of keywords. Qin et al. [17] improved the security of the MCI to
fully MCI where an attacker can obtain ciphertext encrypted with any keyword including
the challenge ones. Cheng et al. [8] also extended the TI security to fully MTI security,
their scheme has stronger security by achieving both full MTI and full MCI to prevent
fully chosen keyword to cipher-keyword attacks (FCKCA). Yang et al. [20] proposed
secure-channel free public-key authenticated encryption with a multi-keyword search
(SCF-PAEMKS) scheme, avoiding the requirement of a secure channel and supporting
conjunctive keyword search along with MCI and MTI. Pu et al. [15] improved Qin et
al.’s [16] scheme to have better performance that is suitable for lightweight devices in IIoT.
Shiraly et al. [19] constructed a pairing-free certificateless PAEKS scheme to remove key
management and perform better. Bai et al. [3] presented a pairing-free PAEKS scheme
based on elliptic curves which also have an MCI security model. Yao et al.’s [21] PAEKS
scheme is secure against chosen-ciphertext attack (CCA) based on lattice algorithms to
prevent quantum attacks and scalable in practice to support conjunctive keyword search
and multi-user settings.

3 Preliminaries
3.1 Bilinear Pairings
Most cryptographic schemes are developed with bilinear pairing which is defined as
e : G1 × G2 → GT where G1, G2 and GT are cyclic groups of prime order p. It carries the
following properties:

1. Bilinearity. For any g1 ∈ G1, g2 ∈ G2, a, b ∈ Zp, then e(ga
1 , gb

2) = e(g1, g2)ab.

2. Non-degeneracy. e(g1, g2) ̸= 1.

3. Computability. For any g1 ∈ G1, g2 ∈ G2, there is an efficient algorithm to compute
e(g1, g2).

The types of bilinear pairings:
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Figure 1: PAEKS Scheme.

• Type-1: G1 = G2.

• Type-2: G1 ≠ G2, but an efficiently computable homomorphism from G2 to G1
exists.

• Type-3: G1 ≠ G2, but no efficiently computable homomorphism from G2 to G1
exists.

3.2 Definition of PAEKS
In the standard PAEKS scheme illustrated in Figure 1, six algorithms are needed:

1. Setup(λ) → params: With the input of a security parameter λ, it outputs a global
system parameter params.

2. KeyGenS(params) → (pkS , skS): With the input of params, it outputs a pair of
public key and secret key of sender (pkS , skS).

3. KeyGenR(params) → (pkR, skR): With the input of params, it outputs a pair of
public key and secret key of receiver (pkR, skR).

4. PAEKS(w, skS , pkR) → Cw: With the input of a keyword w, secret key of sender
skS , and public key of receiver pkR, it encrypts w and outputs the corresponding
ciphertext Cw.

5. Trapdoor(w′, pkS , skR) → Tw′ : With the input of a keyword w′, public key of sender
pkS , and secret key of receiver skR, it generates the corresponding trapdoor of the
keyword Tw′ .

6. Test(pkS , pkR, Cw, Tw′) → 1/0: With the input of public key of sender pkS , public
key of receiver pkR, a keyword ciphertext Cw, and a trapdoor Tw′ , it outputs 1 if the
keyword contained in the ciphertext is matching with the keyword of the trapdoor,
else it outputs 0.

4 Pu et al.’s Lightweight PAEKS Scheme
This section presents the original constructions of Pu et al.’s lightweight PAEKS scheme [15]
in Type-1 bilinear pairing and our enhanced construction in Type-3 bilinear pairing.
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4.1 Pu et al.’s Lightweight PAEKS Scheme in Type-1 Pairing
The original constructions of Pu et al.’s lightweight PAEKS scheme [15] in Type-1 bilinear
pairing are as follows:

• Setup(λ) → params: With the input of a security parameter λ, select p, a large
prime number and set bilinear pairing function e : G1 × G1 → GT , where G1 and
GT are cyclic groups of order p. Select g, random generator of G1 and compute
u = e(g, g). Set two hash functions H1 : {0, 1}∗ → Z∗

p , which takes input of variable-
length binary strings and outputs a fixed-length hash value that maps to Z∗

p , and
H2 : GT → {0, 1}|p|, which accepts input element of GT and outputs a binary string
with a length equal to the bit length of p. The final output is a global public
parameter, params = (G1, GT , p, e, g, u).

• KeyGenS(params) → (pkS , skS): With the input of params, randomly select
y ∈ Z∗

p and set sender’s key pair (pkS , skS) = (gy, y).

• KeyGenR(params) → (pkR, skR): With the input of params, randomly select
x ∈ Z∗

p and set receiver’s key pair (pkR, skR) = (gx, x).

• PAEKS(params, w, skS , pkR) → Cw: With the input of a keyword w, skS , and
pkR, randomly select r ∈ Z∗

p , then, compute for A = H2(uyr), v = H1(w||pky
R), and

B = (gvr · pkr
R). The output is a keyword ciphertext Cw = (A, B).

• Trapdoor(params, w′, pkS , skR) → Tw′ : With the input of a keyword w′, pkS , and
skR, compute for v′ = H1(w′||pkx

S) and Tw′ = pk
1

x+v′
S , and output the trapdoor Tw′ .

• Test(params, Cw, Tw′) → 1/0: With the input of Cw and Tw′ , compare H2(e(Tw′ , B)) =
A. If the comparison is true, output 1; if false, output 0.

4.2 Pu et al.’s Lightweight PAEKS Scheme in Type-3 Pairing
We reconstruct the lightweight PAEKS [15] using Type-3 pairing below:

• Setup(λ) → params: With the input of a security parameter λ, select p, a large
prime number and set bilinear pairing function e : G1 × G2 → GT , where G1, G2
and GT are cyclic groups of order p. Select g1, random generator of G1, g2, random
generator of G2 and compute u = e(g1, g2). Set two hash functions H1 : {0, 1}∗ → Z∗

p ,
which takes input of variable-length binary strings and outputs a fixed-length hash
value that maps to Z∗

p , and H2 : GT → {0, 1}|p|, which accepts input element of GT

and outputs a binary string with a length equal to the bit length of p. The final
output is a global public parameter, params = (G1, G2, GT , p, e, g1, g2, u).

• KeyGenS(params) → (pkS1, pkS2, skS): With the input of params, randomly select
y ∈ Z∗

p and set sender’s key pair (pkS1, pkS2, skS) = (gy
1 , gy

2 , y).

• KeyGenR(params) → (pkR, skR): With the input of params, randomly select
x ∈ Z∗

p and set receiver’s key pair (pkR, skR) = (gx
1 , x).

• PAEKS(params, w, skS , pkR) → Cw: With the input of a keyword w, skS , and
pkR, randomly select r ∈ Z∗

p , then, compute for A = H2(uyr), v = H1(w||pky
R), and

B = (gvr
1 · pkr

R). The output is a keyword ciphertext Cw = (A, B).

• Trapdoor(params, w′, pkS1, pkS2, skR) → Tw′ : With the input of a keyword w′,
pkS1, pkS2, and skR, compute for v′ = H1(w′||pkx

S1) and Tw′ = pk
1

x+v′
S2 , and output

the trapdoor Tw′ .
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• Test(params, Cw, Tw′) → 1/0: With the input of Cw and Tw′ , compare H2(e(Tw′ , B)) =
A. If the comparison is true, output 1; if false, output 0.

In the Test step, the correctness of Type-3 lightweight PAEKS scheme is verified as
follows:

H2(e(Tw′ , B))

= H2(e(pk
1

x+v′
S2 , gvr

1 · pkr
R))

= H2(e(g
y· 1

x+v′
2 , gvr

1 · gxr
1 ))

= H2(e(g
y

x+v′
2 , g

r(x+v)
1 ))

= H2(e(g1, g2)
yr(x+v)

x+v′ )
= H2(e(g1, g2)yr)
A = H2(uyr) = H2(e(g1, g2)yr)

In our enhanced version, the sender has two public keys generated from different groups:
pkS1 from G1 and pkS2 from G2. This is to satisfy v = v′ for the correctness of the Test
algorithm. Notably, G2 elements have a larger size compared to G1 elements due to G2 is a
subgroup of the elliptic curve with a similar equation to G1 but with a different embedding
degree [10]. To minimise the storage space needed for ciphertexts in the database, the
algorithms are designed to generate a smaller-sized keyword ciphertext using G1, which
is stored permanently in the database, and a larger-sized trapdoor using G2, which is
generated for temporary use during the search.

4.3 Security Analysis
Theorem 1. Based on the decisional q-ABDHE and CDH assumptions, the modified
PAEKS scheme in Type-3 pairing can resist IKGA by achieving both MCI and trapdoor
privacy.

The original Pu et al.’s lightweight PAEKS scheme in Type-1 pairing is proven secure
against IKGA using decisional q-ABDHE and CDH assumptions. When a cryptographic
scheme is transformed from Type-1 to Type-3 bilinear pairing, its underlying secruity
assumptions are also transformed. Existing works [2] have proven that if the original
assumptions are valid in the Type-1 generic bilinear group model, they are also valid in the
Type-3 model. Specifically, the underlying computational difficulty is extended from the
symmetric group in Type-1 pairing to the asymmetric groups in Type-3 pairing [2]. Thus,
the security of the scheme in the Type-3 setting follows from its security in the Type-1
setting.

5 Performance Analysis
In this section, the performance of Pu et al.’s lightweight PAEKS is compared between
Type-1 and Type-3 pairing settings based on algorithm execution time and memory usage.
The lightweight PAEKS scheme is implemented using Python Charm-Crypto library, which
is built on the Pairing-Based Cryptography (PBC) library. The performance analysis is
conducted on a laptop with an AMD Ryzen 2.10 GHz processor and 4GB RAM, running
Kali Linux 2022 in a virtual machine. The asymmetric pairing curve used for Type-3
setting is BN254, which has approximately 90-bit security level. For the Type-1 setting,
the symmetric curve SS1024 is used, which provides 50-bit security level according to the
SafeCurve website [1]. The source code is available on GitHub.
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Table 2 and Figure 2 show the time taken to execute each algorithm in milliseconds,
including setup, sender key generation, receiver key generation, PAEKS encryption, trap-
door generation and test. Overall, the results show that Type-3 PAEKS requires a shorter
time compared to Type-1 PAEKS. Each algorithm of Type-3 PAEKS executes faster than
Type-1 PAEKS except for setup and test algorithms. To ensure a fair comparison between
different pairing settings of the scheme, pairing curves with similar security levels should
be chosen. However, due to the limited options of curves provided by the Charm-Crypto
library, BN254 and SS1024 are the most suitable pair of curves available. Despite their
differing security levels, the analysis results demonstrate that Type-3 scheme of 90-bit
security outperforms Type-1 scheme even when Type-1 is at a lower security level of 50-bit.
Given that execution time grows exponentially with the security level, Type-3 scheme
remains faster even if a Type-1 curve with a larger base field, such as 2048-bit, were used
to match the security level of Type-3.

Table 2: Type-1 vs Type-3 PAEKS Algorithms Execution Time.

Scheme Time Taken (ms)
Setup KeyGenS KeyGenR PAEKS Trapdoor Test

Type-1 21.3 15.4 15.7 53.3 32.0 21.8
Type-3 28.2 2.9 1.3 13.6 3.1 24.2

Figure 2: Type-1 vs Type-3 PAEKS Algorithms Execution Time.

Table 3: Type-1 vs Type-3 Pairing Curve Parameter Sizes.

Curve Size (bits)
Prime (q) Order (p) Zp G1 G2

Type-1 SS1024 1033 1024 1024 2066 2066
Type-3 BN254 254 254 254 508 1016

Table 3 illustrates the parameter sizes used in Type-1 SS1024 and Type-3 BN254
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pairing curves. The private key size depends on the order, denoted as p. The public key is
determined by the sizes of G1 and G2, which are based on the prime, q size. G1 and G2 of
Type-1 pairings do not differ in size, both are twice the size of q. In contrast, G1 of Type-3
pairings is twice the size of q, while G2 is four times the size of q. Consequently, the total
size of the two sender public keys, one from G1 and the other from G2, is the sum of the
sizes of both groups. The receiver’s public key size is based on G1. The ciphertext size
is calculated by adding the sizes of G1 and Zp. The trapdoor of Type-1 is the same size
as G1, while Type-3 trapdoor size is the same as G2. Table 4 and Figure 3 present the
communication cost measured in bits for the private key, sender public key, receiver public
key, keyword ciphertext and trapdoor. Type-3 pairing not only provides better security
but also requires less communication overhead compared to Type-1 pairing.

Table 4: Type-1 vs Type-3 Communication Cost.

Scheme Size (bits)
sk pkS pkR Cw Tw

Type-1 1024 2066 2066 3090 2066

Type-3 254 pkS1 pkS2 Total 508 762 1016
508 1016 1524

Figure 3: Type-1 vs Type-3 Communication Cost.

6 Conclusion
In conclusion, Pu et al.’s lightweight PAEKS scheme can support the searching of data
in encrypted form with additional privacy-preserving features, including allowing only
authenticated users to generate valid keyword ciphertext and MCI security to avoid KGA.
With minimal bilinear pairing operation required in the scheme, the scheme is user-friendly
to be implemented for lightweight devices which require efficient computation. We have
modified the scheme to a Type-3 pairing setting to further enhance its performance
efficiency and analysed its implementation performance. To further enhance the security
features of the PAEKS scheme, incorporating the MTI security model can be beneficial
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to prevent attacks that attempt to differentiate trapdoors containing the same keywords
from different sets of keywords. Additionally, the scheme could be further enhanced by
incorporating features such as conjunctive keyword search and fuzzy keyword search to
efficiently perform multiple keyword searches or fuzzy queries within single searches and
minimise communication overhead, especially when searching through large datasets.
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Abstract.
The rise of quantum computing will significantly threaten the security of conventional
cryptographic algorithms, jeopardizing the confidentiality and integrity of sensitive
data. This literature explores the challenges posed by quantum computers and
proposes a roadmap for transitioning government services and applications to post-
quantum cryptography (PQC). By proactively embracing PQC, the government can
better safeguard her critical information and possibly ensure a vibrant and resilient
landscape for a secure digital future. The paper also presents a feasibility study
involving industries developing PQC as an experimental product. The immediate
objective during the transition period is to choose the best implementation strategy,
with a current strategic focus on deploying hybrid solutions that integrate PQC
techniques with classical methods. Until global consensus is achieved on PQC
algorithm adoption, national PQC strategies must be part of hybrid solutions to
ensure high crypto-agility.
Keywords: post quantum cryptography (PQC) · PQC hybrid algorithm · crypto-
agility

1 Introduction
The digital revolution has undeniably woven itself into the fabric of our daily lives,
influencing everything from communication and commerce to governance and national
security. At the bottom of this digital world is cryptography, the science of safeguarding
information using complex mathematical algorithms [9]. These algorithms play vital
roles in ensuring confidentiality, integrity, authenticity, and non-repudiation of data and
communications [15], and they also work together to protect sensitive information, financial
transactions, personal records, and government communications, among others.

However, the ecosystem is going through alarming changes due to the advent of applied
quantum mechanical technology, especially in its computational power segment. Quantum
technology can utilize qubits’ remarkable ability to exist in a superposition of states,
meaning they can represent both 0 and 1 simultaneously [14]. This unique capability
allows quantum computers to solve certain mathematical problems and perform complex
calculations significantly faster than classical computers, particularly for tasks that leverage
quantum algorithms for factoring large numbers. Thus, it poses a daunting risk to widely
used asymmetrical cryptographic algorithms like RSA and ECC, potentially rendering
them vulnerable to attacks by powerful quantum computers in the future [5].

International communities are competing to develop a cryptanalytically relevant quan-
tum computer (CRQC), as the mathematical proof of [17] breaches various current
cryptography standards. In November 2022, IBM launched its 433-qubit “Osprey” proces-
sor, which was the world’s fastest quantum computer at the time, before Atom Computing
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unveiled a 1000-qubit processor in October 2023. Subsequently, IBM made headlines
again in December 2023 with the Condor, featuring 1,121 superconducting qubits. China
officially entered the race in January 2024 with the introduction of Origin Wukong, its first
homegrown, third-generation superconducting quantum computer, which is now available
for global users to trial.

Moving to PQC is not just a technical exercise; it is a necessary step to protect
sensitive national data and keep critical infrastructure safe. ENISA underscores this
necessity, highlighting the potential economic and national security risks associated with
failure to prepare for the quantum threat [6]. A report from the National Academies of
Sciences, Engineering, and Medicine (NASEM) further underscores the urgency of adopting
PQC, emphasizing its critical role in safeguarding sensitive information in sectors such as
healthcare, finance, and national security. To address these risks, PQC standards must be
established. The National Institute of Standards and Technology (NIST) has been leading
this effort, with various algorithms under consideration for standardisation.

2 Post Quantum Cryptography
The establishment of post-quantum cryptography standards is one of the mechanisms used
to mitigate the challenges posed by quantum computation. Consequently, the National
Institute of Standards and Technology (NIST) in the United States launched a global
initiative in February 2016 to invite contributions from scientists and mathematicians
worldwide. As of the end of November 2017, NIST had received a total of 82 draft
algorithms. After initial screening processes, NIST published 69 drafts, with algorithms
derived from five main mathematical methods: Lattices [13] [3], Codes [12], Multivariates
[11], and Hashes for signatures [18].

Following that, NIST released four shortlisted potential quantum-resistant crypto-
graphic algorithms [10] [2], vying for the acclaimed standardization in July 2022. The
Crystals-Kyber algorithm was designated for the key encapsulation mechanism that
consists of symmetrical session keys enveloped in the recipient’s public key due to its
smaller footprint compared to other contenders. This translates into easier facilitation of
key exchange as well as a higher speed of operation. The Crystals-Dilithium, Falcon,
and Sphinc+ algorithms were reviewed as particularly efficient for digital signatures as
an additional element in key exchanging protocol TLS. Subsequently, NIST released four
shortlisted potential.

Nonetheless, NIST announced in July 2023 that the PQC standardisation process will
continue with a fourth round, with BIKE, Classic McEliece, HQC, and SIKE encapsulation
mechanisms still under consideration.

2.1 Hybrid Mode Approach: The Google Chrome Model
Presently, organisations seeking quantum-resistant security are likely to gravitate towards
hybrid cryptographic solutions that integrate both classical and post-quantum algorithms.
The adoption of post-quantum cryptography allows organisations to strengthen their
existing security infrastructure with a future-proof approach by ensuring the continued
effectiveness of current security measures while adding a layer of protection against
potential threats from quantum computers. This hybrid strategy has a significant number
of advocacies from the World Economic Forum [4], the National Cyber Security Centre
(NCSC) of the U.K. [20], the Federal Office for Information Security (BSI) of Germany, the
European Union Agency for Cybersecurity, the French Network and Information Security
Agency, and the White House of the U.S. [16].

On August 15, 2023, Google Chrome version 116 released a quantum hybrid key
agreement mechanism, providing users with meaningful opportunities to engage in PQC
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for HTTPS [15]. Verification from the antropol.com website indicates that the Google.com
servers are currently using the X25519 Kyber-768 hybrid key exchange algorithm on TLS
version 1.3. The approach advances data security by employing a robust combination of
cryptographic techniques.

Unique Symmetric Keys for Each Session: To provide optimal protection, a new,
temporary symmetric key, X25519, is generated for each communication session. This
approach eliminates the risk of compromising previous or future sessions if a key were to
be exposed.

Quantum-Resistant Key Exchange: This innovative PQC mechanism, Kyber-768,
safeguards the exchange of the symmetric key. It encrypts the key using the server’s public
key, ensuring only the server can unlock it with its private key. If an attacker intercepts it,
they cannot decrypt it without the server’s private key, providing exceptional security.

Separate Encryption for Data: Once the secure key exchange is complete, a sepa-
rate, well-established symmetric encryption algorithm like AES takes over and encrypts
the actual data, providing robust confidentiality.

Figure 1: This illustration demonstrates how the X25519Kyber768 key encryption method
(KEM) works to encapsulate and decapsulate symmetric key data.

While the Kyber algorithm remains under development and standardization is yet to
come, its inclusion in browsers like Chrome represents a significant step forward. With
the move, Google has served as a beacon for other companies, potentially accelerating
industry-wide adoption of PQC. By taking a proactive stance, Google is also fostering
a collaborative environment that will ultimately benefit everyone as PQC becomes the
new standard and Kyber’s early implementation paves the way for greater interoperability
between different systems.

There exists an alternative method for utilising the post-quantum hybrid algorithm
that extends beyond the conventional approach. This method involves utilising either the
Chrome Developer Tools or the Cloudflare Research PQC Key Agreement Checking Tool,
which requires manual activation due to its current experimental status. The X25519Kyber-
768 client-side support in Chrome version 116 can then be enabled by following these steps:
Open Google Chrome and launch a new tab. Type "chrome://flags" in the address bar and
press Enter (navigate the Chrome Experiments page). Type "TLS 1.3 hybridized Kyber
support" within the search bar and press Enter. Change status form “default” to “enabled
on the setting label. Click “Relaunch” button to complete the process.

2.2 Public Services as The Prime Mover
Transitioning to PQC involves a well-defined roadmap that leverages best practices from
various countries while considering developing countries’ specific needs and resources. A
comprehensive plan for developing the master plan should include risk assessment and
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prioritization, standardization, and pilot projects, as well as training and awareness cam-
paigns. Additionally, it must address gradual deployment, cost considerations, cooperation,
and knowledge sharing. Released on July 12, 2023, the South Korea master plan mandates
the federal government to fully integrate PQC technology into South Korea’s national
encryption systems by 2035. By 2024, the government must construct actionable PQC
integration plans for acquiring the technology, changing legislation, building industrial
bases, and advancing assurance infrastructure and cryptographic transformation to achieve
this target.

Countries with limited resources and expertise could adopt a similar hybrid transitioning
approach, currently being implemented by some developed nations and multinational
corporations. This approach could begin with several non-essential services, such as the
distribution of essential staples, vehicles, and online applications for business registration
and licensing, as part of a multi-stage pilot initiative before large-scale deployment [8].
Through these pilots, each country could test and evaluate their PQC algorithms alongside
current ones to assess their performances in terms of efficiency, speed, and resilience, so
that, in the end, they would be able to develop tailored solutions for each individual nation.

One of the advantages of a hybrid approach to data security is its ability to protect
data from both current threats and those emerging from the quantum computer era, by
providing a fail-safe mechanism in the event of a compromised data transmission element.
Google Chrome is implementing a hybrid scheme that continuously protects connections
using existing key exchange algorithms, while also allowing for the deployment and testing
of new quantum-resistant algorithms. The method plays a crucial role in safeguarding
against the "harvest now, decrypt later" (HNDL) cryptanalysis exploit, which continuously
captures and stores encrypted data until more powerful quantum technology becomes
available.

Conducting a thorough risk assessment, similar to the Germany BSI PQC plan, will
be essential throughout this first stage. According to the valuation, state authorities
should determine their critical data assets, identify quantum attack vulnerabilities in data
and transmission, and consider possible transitional interruptions. The US government’s
approach [1] suggests prioritizing high-impact government services that manage sensitive
data at the next level, which could involve several stages; E-government services, Govern-
ment procurement application platforms, The process involves registering and identifying
births and deaths, and Healthcare management systems.

2.3 Crypto Agility – Initiating Ease of Modification Procedures Upon
Deployed PQC and the Advantages of Utilizing Secure Locally
Developed PQC

Experts from various countries can eventually adjust certain aspects of the published PQC
algorithms by conducting continuous risk assessments during the pilot phase, leading to
the integration and development of a homegrown PQC product. This is part of the PQC
standardization project, actively promoted by NIST [10], the Chinese Academy of Sciences
(CAS), and the European Telecommunications Standards Institute (ETSI).

In the "Report on Post-Quantum Cryptography", NIST points out right from the
beginning that it "recognises the challenge of moving to new cryptographic infrastructures
and therefore emphasises the need for agencies to focus on crypto agility." Crypto-agility
is the backbone of the hybrid approach [7]. In simple terms, agility is defined as a
system’s ability to adapt quickly to new approaches. Crypto-agility not only encourages
system development and evolution but also acts as a safety measure or incident response
mechanism. Thus, to ensure ease of agility, we put forward the idea that countries are
advised to create their own homegrown PQC algorithms based on the guidelines provided
by organisations like NIST in order to better complement the crypto-agility approach and
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emphasise the security component.
We hypothesise that the national cryptographic community would better understand

locally developed PQC algorithms, ensuring a high agility rate when upgrading and/or
modification is required. Current developments via the NIST PQC forum suggest that the
initial four PQC selected by NIST are still in need of in-depth security analysis. As such,
combining locally PQC techniques with “internationally adopted” PQC algorithms would
provide an extra layer of cryptographic security that is highly modifiable. Our proposed
strategy is practical for national digital sovereignty until we reach a global consensus on
PQC algorithm adoption. A proposed overview of the PQC improved with homegrown
PQC to support Crypto-Agility in Google Chrome is provided in Figure 2.

Figure 2: An overview of the PQC improved with homegrown PQC to support Crypto-
Agility in Google Chrome.

Consequently, we must optimise PQC to meet the performance requirements of existing
applications, which may include resource-constrained environments. Simultaneously, we
must continuously facilitate the development of standardised integration protocols to
enable interoperability between PQC and existing systems.

Collaboration and knowledge sharing with regional and international partners fosters
collective resilience against the quantum threat, as highly emphasized in the Quantum-Safe
Cryptography Roadmap, developed by the Global Forum on Cyber Expertise (GFCE) on
the importance of international cooperation in research, development, and deployment
of PQC solutions. In the regional spectrum, initiatives like the ASEAN Cybersecurity
Cooperation Framework (ACCF) can serve as valuable platforms for knowledge exchange
and capacity building related to PQC adoption.

3 Recommendations for Malaysia
In order to effectively transition to PQC and manage associated costs, Malaysia should
adopt a multifaceted approach involving the government, academic institutions, and the
corporate sector. Our objective is to provide Malaysia with the following recommendations
to assist in the implementation of its PQC strategy:

Quantum-Resistant Key Exchange:Hybrid Approach Adoption: Malaysia should be-
gin integrating PQC with its existing classical cryptographic systems. This hybrid model
offers immediate protection and allows for the evaluation and fine-tuning of PQC tech-
niques. Starting with critical government and public sector applications will lay a strong
foundation for broader adoption.

National PQC Strategy Development: To ensure a successful transition to PQC,
a comprehensive national strategy is required [39]. Key components of this strategy
should encompass the implementation of pilot projects, thorough risk assessments, and
the development of standardised PQC integration protocols. International and regional
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cybersecurity collaboration is essential for generating valuable insights and supporting the
creation of robust PQC solutions.

Research and Development: Investing in local Research and Development efforts
to develop and refine PQC algorithms is critical. Encouraging collaboration between
academic institutions, government agencies, and industry will spur innovation and ensure
that Malaysia’s PQC solutions are both effective and adaptable. This collaboration should
extend to joint research initiatives, workshops, and technology exchange programs with
international partners.

Cybersecurity Education Enhancement: Training and awareness programs are vital
for equipping personnel with the knowledge and skills needed for PQC implementation.
Malaysia should prioritise education initiatives to build a skilled workforce capable of
managing and advancing PQC solutions.

Open-Source Library Utilization: To optimize costs and ensure effective imple-
mentation, Malaysia should leverage open-source PQC libraries. This approach will
enable cost-effective deployment and adaptation of PQC technologies while promoting
transparency and collaboration within the global cybersecurity community.

Fostering Regional and International Collaboration: Effective collaboration
with regional and international counterparts is indispensable for advancing knowledge
and capabilities in PQC. Malaysia’s active participation in global platforms, such as
those convened by the Global Forum on Cyber Expertise (GFCE), is essential for staying
informed about PQC advancements and contributing to global cybersecurity initiatives.

4 Conclusion and Future Work
Quantum computing’s impending threat underscores the criticality of a timely and com-
prehensive transition to PQC. This research highlights the imperative for a collaborative,
multi-stakeholder approach involving government, academia, and industry to effectively
implement PQC. By investing in research, development, and standardisation, Malaysia
can position itself at the forefront of quantum-resistant cybersecurity. A proactive stance
coupled with international cooperation is essential to mitigate the risks associated with
quantum computing and secure a resilient digital future.

Although this research provides a solid foundation for understanding the challenges and
opportunities associated with the transition to PQC, additional investigation is necessary
to fully realise its full potential. Conducting a detailed cost-benefit analysis is essential
to assessing the economic impact of both adopting and postponing PQC implementation.
Moreover, thorough performance evaluations of various PQC algorithms across diverse
hardware platforms are necessary to identify the most effective solutions. Investigating
public perception and acceptance of PQC through user acceptance studies will be crucial
for facilitating widespread understanding and adoption. Additionally, enhancing quantum
threat modelling to identify specific vulnerabilities will help prioritise effective mitigation
strategies.
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Abstract. National security relies not only on cryptographic algorithms but also on
their robustness in ensuring secure communication and data protection. Recognizing
this critical aspect, Malaysia initiated a project known as the National Trusted Cryp-
tographic Algorithm List (MySEAL) to compile a catalog of trusted cryptographic
algorithms for national utilisation. This paper delves into two parts of MySEAL:
AKSA MySEAL (prevalent cryptographic algorithms selected from various standards)
and AKBA MySEAL (novel algorithms or published algorithms excluded in existing
standards or other cryptographic algorithm listing projects). Candidates for AKSA
MySEAL and AKBA MySEAL were comprehensively evaluated by cryptographic
experts using a newly developed scoring matrix. The MySEAL project encompasses
six cryptographic primitives, and, as such, this paper outlines the submission and
evaluation criteria for AKSA MySEAL and AKBA MySEAL for each of these primi-
tives. MySEAL submission and evaluation criteria cover the security and performance
aspects of the candidate algorithms. Finally, this paper presents a list of the approved
algorithms included in AKSA MySEAL, along with a brief overview of the ongoing
developments in AKSA MySEAL 2.0 and AKSA MySEAL 2.1.
Keywords: MySEAL · AKSA MySEAL · AKBA MySEAL · CyberSecurity
Malaysia · trusted cryptographic algorithm · cryptographic standard

1 Introduction
The National Trusted Cryptographic Algorithm List (MySEAL) is a national initiative
aimed at creating a collection of reliable cryptographic algorithms [22]. This initiative
focuses on developing a portfolio of cryptographic algorithms that are well-suited for imple-
mentation within the Malaysian context and align with the National Cryptography Policy
(NCP). The NCP serves as a guiding document for Malaysia’s pursuit of cryptographic
sovereignty, and MySEAL contributes to the scientific aspects of cryptography and crypt-
analysis. Furthermore, the objective of MySEAL is to serve as a comprehensive resource for
the implementation of cryptographic algorithms in information security systems, providing
valuable guidance and references for users. MySEAL aims to enhance the protection
and security of electronically communicated classified information in Malaysia between
Government-to-Government (G2G), Government-to-Business (G2B), Business-to-Business
(B2B) and to Malaysia’s CNII agencies and organisations.

MySEAL was initiated in 2016 and consists of two categories of cryptographic algorithms:
Existing Cryptographic Algorithms, also known as Algoritma Kriptografi Sedia Ada (AKSA)
[24], and New Cryptographic Algorithms, also known as Algoritma Kriptografi Baharu
(AKBA) [23]. AKSA refers to cryptographic algorithms that have already been published in
recognised standards or have undergone thorough evaluation in established cryptographic
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algorithm projects. AKSA includes algorithms endorsed by reputable organisations such
as FIPS (Federal Information Processing Standards) [26], CRYPTREC (Cryptography
Research and Evaluation Committees) [19], NESSIE (New European Schemes for Signatures,
Integrity, and Encryption) [27], and eSTREAM (The ECRYPT Stream Cipher Project)
[15]. Meanwhile, AKBA refers to new cryptographic algorithms that have not yet been
published in recognised standards or widely adopted in the cryptographic community.

The AKSA MySEAL project encompasses various categories of cryptographic primitives,
including block cipher, stream cipher, asymmetric cryptographic scheme, cryptographic
hash function, prime number generator, and deterministic random bit generator. Block
cipher can be further divided into two categories: general-purpose block cipher and
lightweight block cipher. Asymmetric cryptographic scheme consists of three classes:
asymmetric encryption scheme, digital signature scheme, and key agreement scheme.
Whereas, cryptographic hash function can be categorised into general-purpose hash function
and lightweight hash function. For prime number generator, there are probabilistic prime
generator and deterministic prime generator [24].

The paper is structured as follows. Section 2 introduces the key parties involved in
MySEAL evaluation process and discusses the process of MySEAL evaluation for AKSA
MySEAL and AKBA MySEAL. In Section 3, the submission and evaluation criteria of
AKSA MySEAL and AKBA MySEAL are meticulously described for each primitive. The
evaluation result for AKSA MySEAL is presented in Section 4 and Section 6 introduces
MySEAL 2.0 as the continuation of the original MySEAL project. Finally, this paper
concludes MySEAL initiative in Section 7.

2 MySEAL Evaluation Process
The evaluation process for MySEAL algorithms spanned an eight-month period for AKSA
MySEAL and a twenty-four-month period for AKBA MySEAL, during which security and
assessment were conducted by onshore and offshore cryptographic experts. In addition to
security assessment, the performance of the candidate algorithms was assessed with different
measures. The key parties involved in the development of MySEAL include MySEAL
Secretariat, which was responsible for providing the supporting documents needed during
evaluation process. Meanwhile, the roles of MySEAL Focus group which comprises of
national cryptographic experts from Malaysian national agencies and Malaysian universities,
were to determine the direction of MySEAL project and to approve MySEAL development
activities. For AKBA MySEAL, developers were required to submit novel algorithms that
were original and not listed in existing standards or other cryptographic algorithm listing
projects. Local cryptographic experts were appointed as AKSA MySEAL Evaluation
Panel of Expert and AKBA MySEAL Evaluation Panel of Expert, to conduct thorough
assessments on both the existing cryptosystems and the newly proposed cryptosystems,
respectively. After the process of evaluating AKSA MySEAL and AKBA MySEAL
algorithms ended, the shortlisted algorithms were further analysed by AKSA MySEAL
External Reviewer Panel and AKBA MySEAL External Reviewer Panel, respectively. The
external reviewer panels were chosen from several international cryptographic specialists.

2.1 AKSA MySEAL Evaluation Process
The timeline of AKSA MySEAL evaluation process can be divided into four intervals:
the pre-evaluation phase, the first evaluation phase, the second evaluation phase, and the
post-evaluation phase. Firstly, during the pre-evaluation phase which started in 2016,
MySEAL Secretariat proposed a selection of cryptographic algorithms listed in recognised
standards and cryptographic algorithm listing projects as candidates for AKSA MySEAL.
MySEAL Focus Group endorsed highly significant algorithms from these lists for evaluation
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in the first phase of AKSA MySEAL evaluation. To evaluate the algorithms, MySEAL
Focus Group established the MySEAL Submission and Evaluation Criteria, which serve
as benchmarks. MySEAL Secretariat gathered the information for the submission and
evaluation criteria by referencing to other established cryptographic algorithm listing
projects and reputable organisations such as FIPS, CRYPTREC, NESSIE, and eSTREAM.
Then, both submission and evaluation criteria were selected to prioritise and emphasise
the security analysis, performance efficiency, flexibility, maturity, and the soundness of
justification of a cryptographic algorithm to be evaluated. These criteria were then
refined by the MySEAL Focus Group to ensure that they align with the global standards.
Amendments were also made to these criteria during evaluation process to ensure they
are practical, feasible, and most importantly, suitable for use in assessing cryptographic
algorithms.

Section 3 provides more details on the description of MySEAL Submission and Evalua-
tion Criteria. In 2016 and 2018, the MySEAL Project: Submission and Evaluation Criteria
Version 1.0 and MySEAL Project: Submission and Evaluation Criteria Version 2.0 were
published as the guideline documents for AKSA MySEAL, respectively.

The evaluation process of AKSA MySEAL algorithms commenced with the first phase,
which lasted for three months. During this phase, AKSA MySEAL Evaluation Panel of
Expert developed the First Phase of AKSA MySEAL Scoring Matrix based on MySEAL
Submission Criteria, and evaluated the algorithms endorsed by MySEAL Focus Group
during the pre-evaluation phase. In accordance with the scores, a shortlist of AKSA
MySEAL candidates was recommended by the experts to MySEAL Focus Group for
endorsement. At the end of this phase, the First Phase of AKSA MySEAL Evaluation
Report was produced.

The second phase of AKSA MySEAL evaluation comprised thorough assessments
and justifications over a period of five months. In the initial stages, AKSA MySEAL
Evaluation Panel of Expert formulated the Second Phase of AKSA MySEAL Scoring
Matrix, utilizing MySEAL Evaluation Criteria as their guide. Subsequently, a series
of evaluations based on the scoring matrix and evaluation criteria, were conducted for
the proposed algorithms intended for AKSA MySEAL. Upon completing the assessment,
AKSA MySEAL Evaluation Panel of Expert recommended the final list of algorithms that
had successfully met the set forth requirements to MySEAL Focus Group. The endorsed
final list of algorithms was then submitted to AKSA MySEAL External Reviewer Panel
for a comprehensive review and evaluation. The entire process and outcomes of this phase
were meticulously documented in the Second Phase of AKSA MySEAL Evaluation Report.

The AKSA MySEAL evaluation process concluded in 2017. In the post-evaluation phase,
MySEAL Secretariat published the final list of AKSA MySEAL algorithms. Supporting
documents developed for AKSA MySEAL include the Guideline on the Usage of AKSA
MySEAL Recommended Cryptographic Algorithms V1 [10] and the Technical Report on
the Non-Inclusion Cryptographic Algorithms in AKSA MySEAL (AKSA-NICA) v1.0 [11].

2.2 AKBA MySEAL Evaluation Process
The time interval for AKBA MySEAL evaluation process exceeded that of the AKSA
MySEAL evaluation process due to the comprehensive assessment required for newly devel-
oped algorithms. The evaluation process of AKBA MySEAL consisted of a pre-evaluation
phase, three evaluation phases, and a post-evaluation phase. The first, second, and third
evaluation phases each took three, five, and twelve months, respectively. During the
pre-evaluation phase, the submission period for AKBA MySEAL algorithms commenced
in December 2016 and remained open for twelve months. MySEAL Secretariat recom-
mended a compilation of submitted algorithms to MySEAL Focus Group for approval to
be evaluated in the first phase of AKBA MySEAL evaluation.

The first phase of AKBA MySEAL evaluation involved the development of the First
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Phase of AKBA MySEAL Scoring Matrix by AKBA MySEAL Evaluation Panel of
Experts, based on the MySEAL Submission Criteria. The Panel of Experts then conducted
evaluations on the list of submitted algorithms endorsed by MySEAL Focus Group, with
reference to the First Phase of AKBA MySEAL Scoring Matrix and MySEAL Submission
Criteria. Subsequently, AKBA MySEAL Evaluation Panel of Experts provided the
initial list of recommended algorithms for AKBA MySEAL, which required approval from
MySEAL Focus Group. At the end of the first phase of AKBA MySEAL evaluation, the
First Phase of AKBA MySEAL Evaluation Report was produced.

The shortlisted algorithms underwent further evaluation in the second phase of AKBA
MySEAL evaluation. This phase allowed AKBA MySEAL developers to improve and
refine their algorithms before MySEAL Secretariat recommended the improved versions
to MySEAL Focus Group for evaluation. AKBA MySEAL Evaluation Panel of Expert
developed the Second Phase of AKBA MySEAL Scoring Matrix by referring to MySEAL
Evaluation Criteria. This matrix was used as a guide for further evaluations of the
algorithms. Shortlisted algorithms that were endorsed by MySEAL Focus Group proceeded
to the third phase of AKBA MySEAL evaluation. The Second Phase of AKBA MySEAL
Evaluation Report was generated.

The Third Phase of AKBA MySEAL Evaluation aimed at further refining the second
shortlist of AKBA MySEAL algorithms. This phase was similar to the second phase of
AKBA MySEAL evaluation. It involved developing the Third Phase of AKBA MySEAL
Scoring Matrix, based on cryptanalysis and security analysis evaluation.The shortlisted
algorithms were then evaluated using this scoring matrix, and the final list of AKBA
MySEAL algorithms was endorsed by the MySEAL Focus Group before the AKBA
MySEAL External Reviewer Panel reviewed the security analysis evaluation. Finally, the
Third Phase of AKBA MySEAL Evaluation Report was completed.

The post-evaluation phase focused solely on the publication of final list of AKBA
MySEAL by MySEAL Secretariat. The AKBA MySEAL project concluded in 2020.

2.3 Comparison of Evaluation Process
Countries such as the United States, Japan, and various European nations have established
their own cryptography standards, namely FIPS, CRYPTREC, and NESSIE. These
projects serve as sources of reference when developing the evaluation process for MySEAL.

The evaluation process for FIPS [26] consists of first-phase evaluation, second-phase
evaluation, and final evaluation. The main activities during the first and second phases
involve public evaluations and intensive discussions of the preliminary candidates’ analysis
through workshops to produce cut-off lists of algorithms. A standardisation conference
is held throughout the first and second phases of evaluations, and a summary report is
produced at the end of the second-phase evaluation, containing the possible recommended
algorithms for standardisation. The final evaluation focuses on the security levels that can
be provided by the algorithms in the presence of practical attacks. Finally, the approved
list of algorithms by FIPS is published, and a summary report is produced.

Fundamentally, the CRYPTREC evaluation process [19] involves an initial screening
assessment to generate a list of eligible candidates, followed by subsequent in-depth
assessments by local and global researchers, and then a public review by research consortia.
The screening evaluation encompasses a security evaluation to filter out weak algorithms
that are obviously prone to attacks and implementation evaluation, where comprehensive
implementation reports on software and hardware by the submitters are required to pass
the screening. In-depth assessment allows the shortlisted algorithms to be examined
experimentally by experts, and further assessment is opened for public evaluation. After all
evaluation activities are concluded, algorithm recommendations are published. To provide
assurance on the recommended algorithms, CRYPTREC conducts continuous monitoring.
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NESSIE [27] evaluated the submitted cryptographic algorithms by dividing the process
into security evaluation and performance evaluation. The initial phase of evaluation,
which focuses on the security of algorithms, is an internal process. This phase includes
verifying algorithm compliance with the requirements and conducting a comprehensive
initial evaluation. When carrying out the algorithms compliance check, it is essential to
confirm that there are no obvious weaknesses in the algorithms. The initial evaluation is
divided into two independent assessments, and at the end of this phase, a unified summary
of the assessments is produced. Only algorithms that pass both the compliance check and
the independent assessments will be further evaluated in the second phase by external
evaluators through an open workshop. The main focus of the open workshop is to carry out
security and performance evaluations on the narrowed-down candidates. Upon completion
of the second phase, a comprehensive report covering the security and performance of
eligible algorithms is published. The report provides an overview of common attacks,
security assurances, performance assurances, and a conceptual analysis of the performance
of the selected algorithms.

The evaluation process of MySEAL is not vastly different from those used in FIPS,
CRYPTREC, and NESSIE. Specifically, there are two detailed evaluations for AKSA
MySEAL and three detailed evaluations for AKBA MySEAL, focusing on the security
and performance of algorithms to their credibility. Algorithms for AKSA MySEAL and
AKBA MySEAL undergo a basic compliance check or initial screening during the first-
phase evaluation. A summary report is produced at the end of each evaluation phase
to describe the evaluation process and outcomes. Unlike the FIPS, CRYPTREC, and
NESSIE, MySEAL does not include a public review. However, external evaluation by
notable foreign researchers strengthens the validity of algorithms approved by MySEAL.
To conclude the whole process, MySEAL publishes a guideline and a technical report on
the selected algorithms for AKSA MySEAL and AKBA MySEAL.

The evaluation processes of FIPS, CRYPTREC, NESSIE, and MySEAL are summarised
in Table 1.

3 MySEAL Criteria
This section describes the submission and evaluation criteria for each primitive during the
evaluation processes of AKSA MySEAL and AKBA MySEAL.

3.1 Submission Criteria
During the first phase of MySEAL evaluation, all cryptographic algorithms were assessed
against a set of submission criteria. These criteria primarily focused on the structural
requirements of the algorithms, basic security analysis, the presence of test vectors, and the
designer’s justification of design principles. Additionally, reports on implementation and
performance for the targeted software (program code size and RAM size) and/or targeted
hardware (chip area, cycle, bits per cycle, power, and energy) were mandated. It is worth
noting that there are some special criteria which apply to specific primitive groups.

3.1.1 Symmetric Block Cipher

Block ciphers considered for MySEAL are categorised into general-purpose and lightweight
applications. Firstly, general-purpose block cipher primitives must have a minimum key
length and block length of 128 bits, while for lightweight block ciphers must have at least
80 bits for the key length and 64 bits for the block length. Secondly, the security analysis
report should include, but not be limited to, FIPS statistical tests, linear cryptanalysis, and
differential cryptanalysis. Designers of the cipher should provide a minimum of three test
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Table 1: Summary of the Evaluation Process for Various Cryptography Projects

Standard Evaluation Process

FIPS

1. First-phase evaluation:
- public evaluation
- first workshop
- first standardisation conference

2. Second-phase evaluation:
- public evaluation
- second workshop
- second standardisation conference
- produce a summary report and a list of shortlisted algorithms

3. Final evaluation:
- produce a summary report
- publication of approved list of algorithms

CRYPTREC

1. Initial screening assessment
- security and performance assessments

2. In-depth assessments by local and global researchers
3. Public review by research consortia
4. Publication of approved algorithm recommendations
5. Continuous monitoring

NESSIE

1. First-phase evaluation (Internal process):
- algorithm compliance check
- comprehensive initial evaluation:

• two independent assessments
• a unified summary of both assessments

- produce a list of shortlisted algorithms
2. Second-phase evaluation (External process):

- shortlisted algorithms go through an open workshop
- publication of security and performance evaluation report

MySEAL

1. Pre-evaluation phase:
- algorithms selection to be evaluated

2. First-phase evaluation
- algorithm compliance check
- produce a summary report and a list of shortlisted algorithms

3. Second-phase evaluation:
- detailed evaluation on security and performance of algorithms
- external evaluation by notable foreign researchers (only for AKSA MySEAL)
- produce a summary report and a list of shortlisted algorithms

4. Third-phase evaluation (only for AKBA MySEAL):
- detailed evaluation on security and performance of algorithms
- external evaluation by notable foreign researchers
- produce a summary report and a list of shortlisted algorithms

5. Post-evaluation phase:
- publication of approved list of algorithms
- produce a guideline and a technical report

vectors for each key size and three plaintext-ciphertext pairs for each key. The processing
sample must be in ECB mode with ’0’ bit padding, and intermediate output should be
provided for each round.
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3.1.2 Symmetric Stream Cipher

The first requirement for a stream cipher is that it must operate either in synchronous
or self-synchronous mode. When implementing the cipher in hardware, the minimum
key length and internal memory should be 80 bits and 160 bits, respectively. In software
implementations, these values should be at least 128 bits for the key length and 256
bits for the internal memory. Additionally, a comprehensive security analysis report is
mandatory. This report should encompass various aspects, including FIPS statistical tests,
algebraic attacks, correlation attacks, distinguishing attacks, and guess-and-determine
attacks. Finally, test vectors including three sets of keys for each key size, three Initialisation
Vectors (IVs) for each key, a keystream length of 256 bits, and the internal state after
generating 256 keystream bits are needed.

3.1.3 Asymmetric Cryptographic Primitive

For asymmetric cryptographic primitive, proof of correctness is of paramount importance.
The security analysis should include, but is not limited to hard mathematical problems and
assumptions. A minimum key length of 2128 is necessary to attain the security level, as well
as the security model and its accompanying proof. Finally, the inclusion of comprehensive
test vectors is mandatory. The test vectors should comprise a minimum of three key pairs
and two processing samples for each key pair.

3.1.4 Cryptographic Hash Function Primitive

Two classes in cryptographic hash function primitive are general-purpose hash function and
lightweight cryptographic hash function. For the former, the digest sizes must include 224
bits, 256 bits, 384 bits, 512 bits, or larger. While for the latter, the digest sizes must be 80
bits, 128 bits, and 160 bits. Both classes share a maximum message length of 264 − 1 bits.
Additionally, the security analysis report should include, but is not limited to, pre-image
resistance, second pre-image resistance and collision resistance. Moreover, the primitive’s
designers should provide test vectors, including a minimum of three samples for each data
size and the intermediate state for each round.

3.1.5 Prime Number Generator Primitive

The prime number generator (PNG) primitive includes two types of generator: probabilistic
prime generator and deterministic prime generator. Both categories should have polynomial
running times.

Probabilistic prime generator should achieve a proven correctness rate of at least 75%
(comparable to the Miller-Rabin Primality test). The primality test should yield one of
the following outcomes: ‘input is prime’, ‘input is composite’, or ‘test inconclusive’. Test
vectors are required, with prime sizes of 512, 1024, 2048, 3072, 4096, 7680, and 15360 bits,
and three seeds: 128, 256 and 512 bits, for each prime size.

For deterministic prime generator, proof of correctness, the capability to distinguish
Carmichael numbers from prime numbers, and the ability to generate pseudo-prime samples
from the generator are necessary. Additionally, FIPS statistical tests are also required.

3.1.6 Deterministic Random Bit Generator Primitive

For the deterministic random bit generator (DRBG) primitive, there are DRBGs based
on either symmetric or asymmetric methodologies, or neither of them. All three types of
DRBG must run in polynomial time. Additionally, Furthermore, FIPS statistical tests
are also required and proof of correctness for DRBGs that are not based on symmetric
methodologies is mandotory.
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If the primitive’s internal state of DRBGs based on asymmetric methodologies contains
n bits, its period should be at least 2n. The seed size of test vector should be 128, 256,
and 512 bits, utilizing strong asymmetric parameters. For example, the prime numbers
used in the Integer Factorisation Problem (IFP) should be of 1024, 2048, 4096 bits, while
the prime used in the Discrete Logarithm Problem (DLP) should also be of 1024, 2048,
4096 bits.

For DRBGs based on symmetric methodologies, test vectors with seed sizes of 128,
256, and 512 bits, utilizing strong symmetric constructions such as AES and TDES, are
required.

For DRBGs that are not based on both methodologies, designers should provide a
justification for the algorthm’s design principles, and the test vectors should include seed
sizes of 128, 256, and 512 bits.

3.2 Evaluation Criteria
This section outlines the evaluation criteria for each primitive, primarily categorised
into security analysis, cost and performance analysis, and implementation characteristics.
Design simplicity, characterised by an elegant, concise, neat, and easily understandable
design, is considered as an added advantage. Additionally, each primitive must provide a
sound justification for the algorithm’s design principles. Certain primitive groups might
also have minor criteria specific to their category.

3.2.1 Block Cipher

A block cipher should achieve a security level that matches its key size based on cryptanalysis
attacks. For example, a 128-bit key should provide a 128-bit security level. Additionally,
the cipher must pass all FIPS statistical tests across nine data categories.

For cost and performance analysis, AES cipher is used as a benchmark to evaluate
computational efficiency and memory requirements of block ciphers. For lightweight block
ciphers, hardware and/or software implementation measurements should be comparable to
the PRESENT cipher.

In terms of implementation characteristics, the flexibility of the algorithm may include,
but is not limited to, the ability to accommodate additional key and block sizes. Block
cipher algorithms should be implemented securely and efficiently across a wide variety of
platforms and applications, as well as be able to operate as stream cipher, pseudorandom
number generator (PRNG), message authentication code (MAC) generator or hash function.
Furthermore, suitability of the cipher in both software and hardware is considered as an
added advantage, as it demonstrates implementation efficiency in various platforms.

3.2.2 Stream Cipher

The criteria for security analysis and implementation characteristics for stream cipher
are similar to those for block cipher. ChaCha20 algorithm serves as a benchmark for
evaluating the computational efficiency and memory requirements of stream cipher. It
is important to note that, unlike block cipher, stream cipher is specifically expected to
operate as PRNG only.

3.2.3 Asymmetric Cryptographic Primitive

For asymmetric cryptographic primitive, the security criteria include various aspects.
The hard mathematical problems of an asymmetric scheme must be grounded on either
conventional problems, such as DLP and its variants, or post-quantum problems, such
as lattice-based problems and code-based problems. The minimum security level that a
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scheme needs to achieve is 2128. Moreover, the correctness of the security model and its
proof must be in line with the assumptions made in the hard problems.

In terms of cost and performance analysis, parameter size for each security level such as
key size and ciphertext size for encryption, key size, number of passes and bandwidth for
key agreement, as well as key size and signature size for digital signature, are important.
Computational complexity is also an imperative aspect that is meticulously considered
during the evaluation process.

Furthermore, asymmetric cryptographic schemes should provide a valid proof of cor-
rectness, and comparison analysis is considered advantageous.

3.2.4 Cryptographic Hash Function Primitive

Hash function primitive should achieve a security level comparable to its digest size from
a cryptanalytic attack perspective, such as a 128-bit security level for a 128-bit digest size.

For cost and performance analysis, SHA-3 hash function is used as a benchmark to
access the computational efficiency and memory requirements, while for lightweight hash
functions, hardware and/or software implementation measurements should be comparable
to SPONGENT.

Concerning the implementation characteristics, the flexibility of hash function may
include but not limited to: the ability to accommodate additional digest sizes and the
ability to be implemented securely and efficiently in a wide variety of platforms and
applications.

3.2.5 Prime Number Generator Primitive

The algorithms for prime number generator (PNG) primitive should meet the following
security requirements: safe pseudo-random prime number generator, produce strong prime
number and strong prime number pair for integer factorisation problem (IFP safe) and
produce strong prime number for discrete logarithm problem (DLP safe). Additionally, the
algorithms must successfully pass all FIPS statistical tests and demonstrate polynomial
time running time. In terms of implementation characteristics, the algorithm’s flexibility
may include, but is not limited to, the ability to accommodate additional extendable block
sizes, generate primes within a specified interval, and can be implemented efficiently across
a wide range of platforms and applications. Furthermore, merit criteria include algorithm
suitability for both software and hardware, as well as comparative analysis with existing
prime number generators.

3.2.6 Deterministic Random Bit Generator Primitive

The algorithms for deterministic random bit generator (DRBG) primitive should adhere
to the following security requirements: they should ensure safety as a pseudo-random
number generator. Particularly, the algorithms are safe in asymmetric cryptographic
environments (IFP and DLP safe) and symmetric cryptographic environments. Additionally,
the algorithms must successfully pass all FIPS statistical tests and undergo security analysis
with respect to seed entropy. Next, the algorithms should demonstrate polynomial time
running time. Overall, the evaluation criteria for DRBG shares similar requirements
with PNG primitive, but comparative analysis should be conducted with existing random
number generators.

3.3 Comparison of Evaluation Criteria
Evaluation criteria are important when evaluating algorithms. They determine the integrity
and reliability of algorithms approved by standards. Both the quality and quantity of
the adopted evaluation criteria play significant roles in ruling out algorithms with lower
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integrity and reliability.
Security is the most critical criterion for evaluating algorithms; hence, all FIPS,

CRYPTREC, NESSIE, and MySEAL projects take this criterion into account. FIPS
and CRYPTREC focus on integrated evaluation of algorithms against common attacks,
systematic attacks, and heuristic attacks. NESSIE classifies the security level of each
cryptographic primitive as normal, high, or normal-legacy, depending on the minimum key
length required and other security criteria such as block length and output length.

Moreover, implementation characteristics are also adopted as evaluation criteria by
FIPS, CRYPTREC, NESSIE, and MySEAL to assess the efficiency and suitability of
algorithms in both software and hardware, ensuring optimal performance and compatibility
across different platforms.

Furthermore, FIPS, CRYPTREC, NESSIE, and MySEAL include performance as
part of their evaluation criteria, with submissions assessed based on various performance
indicators as appropriate. However, only MySEAL and FIPS include cost as an evaluation
criterion. Latency, throughput, and power consumption are considered performance
indicators, while area, memory, and energy consumption are considered cost indicators.

NESSIE and MySEAL added simplicity and clarity of design as its evaluation criteria,
which are not included in the other standards. Simplicity and clarity in algorithm design
contribute to easier implementation, maintenance, and verification, as well as a lower
likelihood of introducing errors or vulnerabilities.

MySEAL evaluates criteria more critically by considering the soundness of justification
for the algorithm’s design principles, the validity proof of correctness, and the advantages
of comparison analysis.

The evaluation criteria of FIPS, CRYPTREC, NESSIE, and MySEAL are summarised
in Table 2.

Table 2: Standards comparison criteria.

Standard FIPS CRYPTREC NESSIE MySEAL
Security ✓ ✓ ✓ ✓

Cost ✓ ✓
Performance ✓ ✓ ✓ ✓

Implementation
characteristics ✓ ✓ ✓ ✓

Simplicity and
clarity of

design
✓ ✓

Soundness of
justification on

algorithm’s
design

principles

✓

Valid proof of
correctness ✓

Comparison
analysis is an

advantage
✓
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4 AKSA MySEAL Evaluation Result
A total of 48 algorithm candidates were considered during the first phase of evaluation. 42
out of 48 algorithms were then recommended to be further evaluated in the second phase
of evaluation. The final list of AKSA MySEAL which successfully passed both phases
consists of 30 cryptographic algorithms, as shown in Table 3.

Table 3: Listed algorithms in AKSA MySEAL.

Cryptographic Primitive Algorithm

Symmetric Block Cipher

Block Cipher:
1. AES-128, AES-192, AES-256 [30]
2. Camellia-128, Camellia-192,
Camellia-256 [1]
3. CLEFIA-128, CLEFIA-192,
CLEFIA-256 [33]

Lightweight Block Cipher:
1. PRESENT-80, PRESENT-128 [8]
2. HIGHT [18]

Symmetric Stream Cipher
1. ChaCha20-256 [5]
2. KCipher-2 [21]
3. Rabbit [6]

Asymmetric Cryptographic
Scheme

Digital Signature
Scheme:
1. DSA [28]
2. ECDSA [20]
3. RSA-PSS [4]

Key Agreement Scheme:
1. ECDH [9]
2. DH [13]

Asymmetric Encryption
Scheme:
1. PSEC-KEM [32]
2. RSA-KEM [34]
3. ACE-KEM [34]
4. ECIES-KEM [34]
5. RSA-OAEP [3]
6. NTRU [17]

Cryptographic Hash Function

Hash Function:
1. SHA-384, SHA-512, SHA-512/224,
SHA-512/256 [12]
2. SHA3-224, SHA3-256, SHA3-384, SHA3-512,
SHAKE128, SHAKE256 [14]

Lightweight Hash Function:
1. SPONGENT-88, SPONGENT-128,
SPONGENT-160, SPONGENT-224,
SPONGENT-256 [7]
2. PHOTON-80/20/16, PHOTON-128/16/16,
PHOTON-160/36/36, PHOTON-224/32/32,
PHOTON-256/32/32 [16]

Prime Number Generator
1. Miller-Rabin Primality Test [29]
2. Elliptic curve Primality Certificate [2]
3. Shawe-Taylor’s Algorithm [31]

Deterministic Random
Bit Generator

1. HMAC-SHA-384-DRBG, HMAC-SHA-512-DRBG [25]
2. SHA-512/224-DRBG, SHA-512/256-DRBG5,
SHA-384-DRBG, SHA-512-DRBG [25]
3. AES-128-CTR-DRBG, AES-192-CTR-DRBG,
3-Key-TDEA-CTR-DRBG [25]



206 MySEAL: A National Trusted Cryptographic Algorithm List

5 AKBA MySEAL Evaluation
Seven newly developed cryptographic algorithms were recommended for AKBA MySEAL
in the pre-evaluation phase. These comprise one block cipher algorithm, three algorithms
from asymmetric encryption schemes, two algorithms from digital signature schemes, and
one prime number generator algorithm. The algorithms underwent at most three evaluation
phases as described in Section 2.2.

5.1 AKBA MySEAL Evaluation Result
All seven cryptographic algorithm candidates for AKBA MySEAL successfully passed
the First Phase of AKBA MySEAL Evaluation. However, during the Second Phase of
AKBA MySEAL Evaluation, only one algorithm from the Asymmetric Encryption Scheme
primitive was eliminated.

Out of the seven algorithms submitted for AKBA MySEAL, only two passed through
to the Third Phase of AKBA MySEAL Evaluation, which are from asymmetric signature
scheme and digital signature scheme, respectively.

6 MySEAL 2.0
MySEAL initiative began in 2016 and concluded in 2020 with a successfully publication of
the AKSA MySEAL in 2017. In 2023, after more than five years later, a review of the
AKSA MySEAL list was carried out, marking the start of a continual initiative named
MySEAL 2.0. MySEAL 2.0 encompasses of three distinct categories; AKSA MySEAL
Approved, AKSA MySEAL Neutral, and AKSA MySEAL Monitored. AKSA MySEAL
Approved lists existing cryptographic algorithms selected from various standards (i.e. FIPS
and ISO/IEC) and other cryptographic algorithm listing projects. AKSA MySEAL Neutral
lists cryptographic algorithms that are in a transitional phase, allowing their usage with
caution under controlled circumstances. However, these algorithms are listed in other
approved cryptographic algorithm standardisation projects. AKSA MySEAL Monitored
are list of cryptographic algorithms intended solely for ensuring interoperability with legacy
systems.

The processes and activities for AKSA MySEAL 2.0 Approved initiative were carried
out similarly to those activities caried out during the first round of AKSA MySEAL
initiative. It commenced with the pre-evaluation process, which included refining the
Nomination Criteria (previously referred to as Submission Criteria) and the Evaluation
Criteria, as well as selecting the most current cryptographic algorithm listed in recognised
standards and cryptographic algorithm listing project.

The first phase of AKSA MySEAL 2.0 Approved evaluation was conducted in May
2023, whereas the second phase was completed in December 2023. Scoring matrixes were
developed by the MySEAL Evaluation Panel of Expert based on the MySEAL Nomination
Criteria and MySEAL Evaluation Criteria for first phase and second phase respectively.
Evaluation reports were produced from the two evaluation phases. To ensure the report
prepared by cryptographic experts throughout Malaysia meets the global standards, the
Second Phase of AKSA MySEAL Approved 2.0 Evaluation Report was submitted to
MySEAL External Reviewers from Germany, New Zealand, France, Belgium, and Iraq for
thorough review.

To move forward, new cryptographic algorithms, AKBA MySEAL 2.0 need to be incor-
porated into the MySEAL 2.0 initiative. Algorithms submitted to the AKBA MySEAL
2.0 initiative will undergo three evaluation phases. The algorithms for AKBA MySEAL
2.0 are sourced through public submissions. An announcement to the public cryptographic
community to call for algorithm submissions for AKBA MySEAL 2.0 is necessary and has
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been made in March 2024. Additionally, for the AKSA MySEAL initiatives, it has been pro-
posed incorporating new cryptographic primitives to support the extensive implementation
of cryptographic algorithms in cryptographic products. The new cryptographic primitives
to be included in the AKSA MySEAL 2.1 are Message Authentication Code (MAC), Key
Derivation Function (KDF), Threshold Cryptography, Homomorphic Encryption, and
Authenticated encryption.

7 Conclusion
The MySEAL projects, encompassing both the AKSA and AKBA initiatives, is focused on
establishing a robust portfolio of cryptographic algorithms for Malaysia. Both initiatives
involved multi-stage evaluations conducted by a panel of cryptographic experts, culminating
in the finalisation of the AKSA MySEAL list in 2017 and the AKBA MySEAL list in 2020.

Furthermore, MySEAL 2.0 was launched to ensure the continued relevance of the AKSA
MySEAL-approved algorithms. The evaluation process mirrors the original MySEAL
project but introduces three categories (AKSA MySEAL Approved, AKSA MySEAL
Neutral, and AKSA MySEAL Monitored) to classify the evaluated algorithms. Looking
ahead, newly developed cryptographic algorithms will be incorporated into AKBA MySEAL
2.0, as announced in March 2024, and new cryptographic primitives will be added to AKSA
MySEAL 2.1 to support secure cryptographic products

Overall, the MySEAL projects align with the National Cryptography Policy, reinforc-
ing Malaysia’s cryptographic autonomy and security infrastructure. By leveraging on
established cryptographic standards and fostering new algorithms, MySEAL enhances the
nation’s information security systems and cybersecurity posture. The projects carefully
evaluate cryptographic primitives based on criteria such as security, performance, and
implementation characteristics, playing a pivotal role in safeguarding sensitive data in an
interconnected world.
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