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ABSTRACT

AAβ cryptosystem is a factorization based public key encryption
that uses the modulus of N = p2q. In this paper, we present three
types of algebraic analysis upon the AAβ cryptosystem. We begin with
the continued fraction’s method, then followed by the Coppersmith’s
techniques which present several potential ways to retrieve the prime
factor of p and q from the AAβ public keys or the plaintext m from
the AAβ ciphertext, respectively. For the third analysis, we analyse the
congruence relation in order to solve the AAβ equation. Thus, based
on such analysis, suggestions are offered as a counter measure on how
to secure the AAβ cryptosystem during key generation and encryption
process.
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1 INTRODUCTION

In 2013, Ariffin et al. (2013) propose a new public key cryptosystem namely
the AAβ cryptosystem, which combines the concept of the Bivariate Function
Hard Problem together with the integer factorization problem of the modulus
of N = p2q (Ariffin et al., 2013). The AAβ cryptosystem are able managed to
overcome the decryption failure scenario exhibited by the Rabin cryptosystem
(Rabin, 1979) and able to decrypt correctly without failure. Thus, it concluded
a long journey by various authors in trying to overcome the decryption failure
scenario of the Rabin cryptosystem. Among them were nicely surveyed in
Asbullah and Ariffin (2016). Furthermore, the AAβ cryptosystem was proven
to resilient to the stronger adversarial model, namely the chosen ciphertext
attack (Asbullah and Ariffin, 2015b).

The advantages for AAβ cryptosystem is exhibited by its encryption al-
gorithm that does not involve complicated arithmetic operations, for instance,
such as division, modular multiplication or exponentiation. Only basic mul-
tiplication and addition is required. Moreover, the decryption method is able
to produce a unique solution without engaging with any padding or redundan-
cies, while still occupying the Rabin primitive (Asbullah and Ariffin, 2014). In
addition, AAβ cryptosystem acquired the quality to secure large data sets.

Our contributions. In this paper, we put forward rigorous mathematical
analyses conducted upon the AAβ cryptosystem. First, we showed the alge-
braic analysis using the continued fraction’s method by manipulating the AAβ
public keys and recover its prime factor; p and q. Secondly, we present the
Coppersmith’s theorems upon theAAβ ciphertext that present several possible
ways to recover the plaintext m. The third analysis using the congruence rela-
tion of theAAβ equation and showing that to solve such congruence relation is
currently infeasible. Thus, several suggestions are provided on how to secure
the AAβ cryptosystem during its key generation and encryption process.

Paper Organization. The remainder of the paper is structured as follows.
In Section 2, we start with the description of the AAβ cryptosystem, followed
by the Legendre’s theorem and the Coppersmith’s technique. In Section 3,
we present the algebraic analysis, namely the Legendre’s theorem, the Cop-
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persmith’s method and the congruence relation upon the AAβ cryptosystem.
Finally, we conclude in Section 4.

2 PRELIMINARIES

In this section we start with the description of the AAβ cryptosystem. We then
introduce the basic facts about the Legendre’s theorem and the Coppersmith’s
method that are used in our analysis.

2.1 AAβ Cryptosystem

First of all, we will review the AAβ cryptosystem which is proposed earlier
by Ariffin et al. (2013). We now describe the key generation, encryption and
decryption procedure of AAβ cryptosystem as follows.

Algorithm 1 AAβ Key Generation Algorithm

Input: The size k of the security parameter
Output: The public key A1, A2 and the private key d, p, q

1. Choose two random and distinct primes p and q such that 2k < p, q <
2k+1 satisfy p, q ≡ 3 (mod 4)

2. Compute A2 = p2q

3. Compute a random integer A1 such that 23k+4 < A1 < 23k+6 and
gcd(A1, A2) = 1

4. Compute an integer d such that A1d ≡ 1 (mod A2)

5. Return the public key A1, A2 and the private key d, p, q

2.2 Legendre’s theorem

In this section, we show the Legendre’s theorem based on continued fractions
as follows.
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Algorithm 2 AAβ Encryption Algorithm

Input: The plaintext m, t and the public key A1, A2

Output: A ciphertext c

1. Choose a plaintext 22k−2 < m < 22k−1 such that gcd(m,A2) = 1

2. Choose a plaintext t such that 24k < t < 24k+1

3. Compute c = A1m
2 +A2t

4. Return the ciphertext c

Algorithm 3 AAβ Decryption Algorithm (Asbullah and Ariffin, 2014)

Input: A ciphertext c and the private key d, p, q
Output: The plaintext m, t

1. Compute w ≡ cd (mod A2)

2. Compute mp ≡ w
p+1
4 (mod p)

3. Compute mq ≡ w
q+1
4 (mod q)

4. Proceed to solve mp (mod p) and mq (mod q) using Garner’s algo-
rithm to obtain the list mi for i = 1, 2, 3, 4

5. Compute ti =
c−A1m2

i
A2

for mi < 22k−1 for i = 1, 2, 3, 4

6. Sort the pair (mi, ti) for integer ti, else reject

7. Return the plaintext m, t
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Theorem 2.1 (Legendre’s Theorem). (Hardy and Wright, 1965) Let R is a
rational number. Let x, y ∈ Z, y 6= 0 and gcd(x, y) = 1. Suppose

∣∣∣R− x
y

∣∣∣ <
1

2y2
, then x

y is a convergent of the continued fraction expansion of R.

The theorem simply says that the unknown integers x and y can be re-
trieved from the list of continued fraction expansion of a rational number R
satisfying the given inequality. We remark that the theory of continued frac-
tions is one of the very important technique used in the analysis upon a public
key cryptosystem. For instance, see Nitaj (2011) and Asbullah and Ariffin
(2015a).

2.3 Coppersmith’s Theorem

In general, finding solutions to modular equations is easy if we know the factor-
ization of the modulus. Else, it can be difficult. Consequently, a significantly
powerful method for finding small roots of modular polynomial equations was
invented by Coppersmith (1997). When working with modulo of a prime num-
ber, there is no reason to use the Coppersmith’s theorem since there exist far
better root-finding algorithm (for instance, Newton method), yet in cryptogra-
phy we usually deal with a number of the product of primes (Galbraith, 2012).
Moreover, this method has found many different applications in the area of
cryptography and a vastly useful tool for cryptanalysis (Nitaj, 2013). We im-
mediately provide the Coppersmith’s theorem as follows.

Theorem 2.2. (Coppersmith, 1997) LetN be an integer of unknown factoriza-
tion. Let fN (x) be a univariate, a monic polynomial of degree δ. Then we can
find all solutions x0 for the equation fN (x) ≡ 0 (mod N) with |x0| < N

1
δ in

polynomial time.

Theorem 2.3. (May, 2003) Let N be an integer of unknown factorization,
which has a divisor b > Nβ . Furthermore, let fb(x) be a univariate, a
monic polynomial of degree δ.Then we can find all solutions x0 for the equa-

tion fb(x) ≡ 0 (mod b) with |x0| < 1
2N

β2

δ in polynomial time.
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3 ANALYSIS AND DISCUSSION

In this section, we begin the analysis of the AAβ cryptosystem using the con-
tinued fraction’s and the Coppersmith method upon the on the AAβ ciphertext
equation. We then focuses on the the congruence relation on the AAβ cryp-
tosytem is then given in subsequence subsection.

3.1 Continued Fraction’s Method

Suppose A1 and A2 are the public parameters from the AAβ cryptosystem.
Based on the analysis in this section, we remark that it is important to carefully
check for each parameter during the AAβ key generation process.

Theorem 3.1. Let A1 = e0 + apq for some integer e0 and a. Suppose∣∣∣A1
A2
− a

p

∣∣∣ < 1
2p2

then a
p is a convergent of the continued fraction expansion

of A1
A2

.

Proof. Consider the valueA1 = e0+apq then it can be rewritten asA1 ≡ e0
(mod pq). Suppose e0 (mod pq) with e0 < pq. If we multiplyA1 = e0+apq
with p, then we have A1p = e0p+ ap2q = e0p+ aA1. Hence∣∣∣∣A1

A2
− a

p

∣∣∣∣ =
|A1p− aA2|

A2p

=
|e0|
A2

If |e0|A2
< 1

2p2
, that is if e0 < A2

2p2
< q

2 , then by Theorem 2.1, ap is a convergent

of the continued fraction expansion of A1
A2

. This lead to finding p and then q.
�

Remark 3.1. Therefore, we put a remark that A1 ≡ e0 (mod pq) should be
chosen carefully (i.e. e0 >

q
2 ).

Theorem 3.2. LetA1 = e1+bp
2 for some integer e1 and b. Suppose

∣∣∣A1
A2
− b

q

∣∣∣ <
1

2q2
, then b

q is a convergent of the continued fraction expansion of A1
A2

.
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Proof. Consider the value A1 = e1+ bp
2 then it can be rewritten as A1 ≡ e1

(mod p2). Suppose e1 (mod p2) with e1 < p2. If we multiply A1 = e1+ bp
2

with q, then we have A1q = e1q + bp2q = e1q + bA1 Hence∣∣∣∣A1

A2
− b

q

∣∣∣∣ =
|A1q − bA2|

A2q

=
|e1|
A2

If |e1|A2
< 1

2q2
, that is if e1 < A2

2q2
< p2

2q , then by Theorem 2.1, bq is a convergent

of the continued fraction expansion of A1
A2

. This lead to finding q and then p.
�

Remark 3.2. Therefore, we put a remark that A1 ≡ e1 (mod p2) should be
chosen carefully (i.e. e1 >

p2
2q ).

3.2 Coppersmith’s Method

We now analyze the AAβ cryptosystem based on the Coppersmith’s method
(i.e.Theorem 2.2 and Theorem 2.3) and obtain the following results.

Proposition 3.1. Let c = A1m
2 +A2t be the AAβ ciphertext. Let d such that

A1d ≡ 1 (mod A2) where A2 = p2q. If m < A
1
2
2 , then it can be found in

polynomial time.

Proof. Since there exist an integer d such that A1d ≡ 1 (mod A2) where
A2 = p2q. Compute w ≡ cd ≡ m2 (mod A2). Consider fA2(x) ≡ x2−w ≡
0 (mod A2). Consider the Coppersmiths method (i.e. Theorem 2.2) hence

δ = 2, the root x0 = m can be recovered if m < A
1
δ
2 = A

1
2
2 ≈ 2

3k
2 . �

Proposition 3.2. Let c = A1m
2 + A2t be the AAβ ciphertext. Let w ≡ m2

(mod p2) such that p2 is an unknown factor for A2. If m < A
2
9
2 , then m can

be found in polynomial time.
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Proof. Suppose w ≡ cd ≡ m2 (mod p2) such that p2 is an unknown factor

for A2. Let fp2(x) ≡ x2 − w ≡ 0 (mod p2) with p2 ≈ 22k ≈ A
2
3
2 . Consider

the Theorem 2.3. We can find a solution x0 = m if m < 1
2A

β2

δ
2 < A

( 23 )2

2
2 =

A
2
9
2 ≈ 2

2k
3 . �

Remark 3.3. Therefore in order to avoid both attacks, we would set m > 2
3k
2

in the AAβ encryption algorithm.

Proposition 3.3. Let d0 such that A1d0 ≡ 1 (mod p2) where p2 is an un-

known factor for A2. If |d0| < A
4
9
2 then d0 can be found in polynomial time.

Proof. Let d0 such that A1d0 ≡ 1 (mod p2) where p2 is an unknown factor

forA2. Consider fp2(x) ≡ A1x−1 ≡ 0 (mod p2) with p2 ≈ 22k ≈ A
2
3
2 . Thus

by applying Theorem 2.3, we can find solution x0 = d0 if |d0| < 1
2A

β2

δ
2 <

A
( 23 )2

1
2 = A

4
9
2 . then d0 can be found in polynomial time. �

Corollary 3.1. Let d1 such that A1d1 ≡ 1 (mod pq) where pq is an unknown

factor for A2. If |d1| < A
4
9
2 then d1 can be found in polynomial time.

Proof. Consider fpq(x) ≡ A2x− 1 ≡ 0 (mod pq) with pq > A
2
3
2 . Then we

reach the same conclusion as the Proposition 3.3. �

The significant of the result from Proposition 3.3 and Corollary 3.1 is that
if one is able to compute either d0 or d1 then one is able to factor A2 = p2q.

Proposition 3.4. If d0 < A
4
9
2 such that A1d0 ≡ 1 (mod p2), then A2 = p2q

can be factored in polynomial time.

Proof. Consider the relation A1d0 ≡ 1 (mod p2). Suppose the integer d0 <

A
4
9
2 could be computed using Proposition 3.3. Then we have the value A1d0−

1 ≡ 0 (mod p2) where A1d0 − 1 is an integer multiple of p2. Observe that
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if we take the gcd(A1d0 − 1, A2) resulting p2, and then A2
p2

= q. The same

argument is applicable for d1 < A
4
9
2 such that A1d1 ≡ 1 (mod pq). �

Corollary 3.2. If d1 < A
4
9
2 such that A1d1 ≡ 1 (mod pq), then A2 = p2q

can be factored in polynomial time.

Proof. Consider Proposition 3.4. The same argument is applicable for d1 <

A
4
9
2 such that A1d1 ≡ 1 (mod pq). �

Remark 3.4. Consider Propostion 3.4 and Corollary 3.2. In order for the
AAβ cryptosystem to be resistant against such methods, it is important to

check for each d0, d1 > A
4
9
2 during the AAβ key generation process.

3.3 Congruence Relation

Consider the Algorithm 1. Observe that the integer d is easily computed,
nonetheless without the prime factors of A2, we only ended up with the con-
gruence relation of cd ≡ m2 (mod A2) where A2 = p2q. Thus to solve the
congruence m2 (mod A2) reduces to solve the integer factorization problem,
which is currently infeasible. Now, since the gcd(A1, A2) = 1 then exist a
unique integer d′ such that A2d

′ ≡ 1 (mod A1). In this section, we show that
such integer d′ can be use to solve the AAβ equation, but it is still far from
feasible.

Theorem 3.3. Suppose c = A1m
2 + A2t be the AAβ equation. Let d′ such

that A2d
′ ≡ 1 (mod A1). If at minimum 2k−4 is exponentially large, then it

is infeasible to determine m2 or t from its congruence relation.

Proof. Let c = A1m
2+A2t be the AAβ equation. Since the gcd(A1, A2) =

1 thus there exist the integer d′ such that A2d
′ ≡ 1 (mod A1). Suppose we

take cd′ ≡ t (mod A1). Set a ≡ t (mod A1). Then there exist for integer j
such that

t = a+A1j (1)
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Substitute (1) into c = A1m
2 + A2t, we obtain c = A1m

2 + A2t = A1m
2 +

A2(a + A1j). Then we have m2 = c−A2(a+A1j)
A1

= c−A2a
A1
− A2j. Note that

m2 ∈ Z also implies c−A2a
A1

∈ Z. Hence setting b = c−A2a
A1

, it follows that
we have construct two parametric equation t = a + A1j and m2 = b − A2j
for c = A1m

2 + A2t. However, it is suffice only to find the integer j for
m2 = b − A2j such that j = b−m2

A2
satisfying 24k−4 < m2 < 24k−2 and√

b−A2j ∈ Z. We know that 23k < A2 < 23k+3. Hence we deduce that j
should be in the range of

b− 24k−2

23k
< j <

b− 24k−4

23k

Therefore the difference between the upper and the lower bound of j is

b− 24k−4

23k
− b− 24k−2

23k
=
−24k−4 + 24k−2

23k

=
(22 − 1) · 24k−4

23k

= 3 · 2k−4

> 2k−4

The difference is very large and finding the correct j is need to sieve through
approximately 2k−4 possible integer where 2k−4 is exponentially large. Hence
finding the correct j using this approach is infeasible. �

4 SUMMARY

We now summarize the paper. In this paper, we put forward rigorous mathe-
matical analyses conducted upon the AAβ cryptosystem. First, we present the
congruence relation of the AAβ equation. We showed that to solve such con-
gruence is infeasible. Secondly, we presented the analysis using the continued
fraction’s method which applies when e0 < q

2 (or e1 < p2
2q ) satisfies an equa-

tionA1 = e0+apq (orA1 = e1+bp
2), hence obtained the primes p and q. The

third analysis is using the Coppersmith’s theorems upon the AAβ ciphertext to
recover the plaintext m. Finally, we provide a suggestion as a countermeasure
during the AAβ key generation and encryption process, respectively.
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