
International Journal of Cryptology Research 6(1): 31 - 46 (2016)

Identity-Based Signature using Bilinear Pairings on
iPhones

Wai-Choong Wong1, Tiong-Sik Ng1, and Ji-Jian Chin *1

1Faculty of Engineering, Multimedia University

E-mail: jjchin@mmu.edu.my
∗Corresponding author

ABSTRACT

Many cryptographic protocols based on bilinear pairings were in-
troduced over the years with various implementations such as identity-
based identification (IBI) and identity-based signature (IBS). While Pair-
ing Based Crypto (PBC) library is available as one of the most well-
known open source pairing-based library based on elliptic curve cryp-
tography (ECC), Tan et al. (2010) had developed a Java-based pairing
library that functions in a similar manner as well as provides compar-
ative performance based on pairing time. However, Tan et al. (2010)’s
library does not support the development on Apple’s iOS platform due
to the distinct programming language it is written in. Recently Cheah
et al. (2015) successfully simulated a pairing-based IBI scheme in iOS
based on Tan et al. (2010)’s library by translating it but did not manage
to extend his work as a mobile application due to linker error. In this
work, we managed to overcome that problem and successfully imple-
mented a pairing-based IBS scheme with Tan et al. (2010)’s library for
mobile devices such as iPhones.

Keywords: Bilinear pairings, identity-based signature, iOS, Apple, iPhone

Wai-Choong Wong, Tiong-Sik Ng, & Ji-Jian Chin

1 INTRODUCTION

According to the statistic shown by Pew Reserch Center, the ownership for mo-
bile devices such as smartphones and tablets have been steadily growing over
the recent years (Pew-Research-Center, 2015). People nowadays are relying
on these smart devices to communicate with each other. Wireless connections
between the mobile devices are convenient but have much to be desired in
terms of security. Thus, identity authentication and verification processes be-
tween both parties are mandatory to ensure a secured environment for wireless
communication. Cryptography plays a huge role in providing confidentiality
and integrity in these situations.

Based on International Data Corporation (IDC)’s analysis in 2015, Google’s
Android OS is holding 82.8% of market share, followed by 13.9% for Ap-
ple’s iOS, 2.6% for Windows Phone, and 0.7% for others (International-Data-
Corporation, 2015). Even though iOS is having a large user base, it appears
that pairing-based cryptographic libraries are almost non-existent and has yet
to receive widespread support.

1.1 Motivations and related work

Our primary motivation for this work is Cheah et al. (2015)’s successful work
that showed an efficient identity-based identification scheme using ECC pairing-
based libraries can be implemented in iOS by translating the Java-based li-
brary by Tan et al. (2010). Their work is significant as it shows a working
pairing-based security scheme on iOS platform which could be further imple-
mented for various security applications in the industry. Also, pairing-based
implementations for the iOS platform are still rare at this time. Our goal for
conducting this work is add to the research and application of pairing-based
cryptography on iOS mobile platform.

32 International Journal of Cryptology Research

Implementation of a Pairing-Based Identity-Based Signature on iPhones

1.2 Contributions

In this work, the IBS scheme implemented was proposed by Cha and Cheon
(2003). We simulate the scheme by translating Tan et al. (2010)’s library and
develop a mobile application for iOS to implement the scheme mentioned.
Our achievement is an extension of Cheah et al. (2015)’s results, where the
authors only managed to implement a simulator for the Mac. In contrast, our
implementation successfully runs on iPhones. To our knowledge, this is the
first successful implementation of a pairing-based IBS scheme on iOS platform
for mobile devices using Tan et al. (2010)’s library. In addition to the IBS, we
also implemented the ECC version of Elgamal public key encryption (PKE)
scheme Elgamal (1985) using the same ECC pairing-based library.

The advantage of running pairing-based cryptosystems is that the secret
key length can be much shorter than pairing-free alternatives, such as RSA or
DSA. We observe the running time for different stages of the scheme by using
both simulator and mobile devices with efficient results as well. We describe
the methods and procedures we used for conducting this work in detail.

The rest of the paper is organized as such. In section 2, we will first de-
scribe the Cha-Cheon IBS scheme and its stages in detail. In section 3, we
will then describe the ECC ElGamal scheme and also its stages in detail. In
section 4, we will show how we developed the mobile application using avail-
able tools. In section 5, we will show our results on both simulator and iOS
devices. Section 6 is the conclusion of our work.

2 THE CHA-CHEON IBS SCHEME

2.1 Preliminaries

Notation-wise, let {0, 1}∗ denote the set of all bit strings while {0, 1}n the set
of bit strings of length n. If a string s ∈ {0, 1}∗ then |s| denotes the length of

s. If S is a set then |S| denotes the size of S. Let x $← S denote a randomly
and uniformly chosen element x from a finite set S. An elliptic curve E is set

International Journal of Cryptology Research 33

Wai-Choong Wong, Tiong-Sik Ng, & Ji-Jian Chin

up over a field Fq. A public function f : m→Pm maps messages m to points
Pm onE. Lastly let Zp denote the set of positive integers modulo a large prime
p.

Let G be a group of prime order p and let q be a large prime where q =
p/2−1. G is a group in which Computational Diffie-Hellman problem (CDHP)
is considered intractable to be solved. Let P be a random generator in G. The
DDHP problem is defined as: Given (P, aP, bP) as a Diffie-Hellman tuple,

where a, b $← Zq, calculate abP . The Cha-Cheon IBS scheme is proven to be
secure if the CDHP is intractable.

2.2 Bilinear Pairings

Secondly, Cha-Cheon IBS scheme runs using a bilinear pairing function map-
ping elements from group G to group GT , i.e. e : G×G→ GT . The bilinear
pairing function e requires the following properties:

1. Bilinearity: e(aP, bP) = e(P, P)ab.

2. Non-degeneracy: e(P, P) 6= 1

3. e is efficiently computable.

2.3 The Cha-Cheon IBS Scheme

An IBS scheme consists of 4 stages: Setup, Extract, Sign and Verify. Follow-
ing this model, the Cha-Cheon IBS scheme is defined in detail as follows:

1. Setup: Choose a prime generator P $← G and a master secret key s $←
Zq, then set Ppub = sP . Select hash functions H1 : {0, 1}∗ ×G → Zq

and H2 : {0, 1}∗ → G. Lastly establish the pairing function e : G ×
G→ GT . Publish the system parameters as (G1, GT , q, e, P, Ppub, H1, H2)
and keep s secret.

34 International Journal of Cryptology Research

Implementation of a Pairing-Based Identity-Based Signature on iPhones

2. Extract: Given an identity ID (e.g. email address, domain), calculate
Q = H2(ID) and DID = sQ. QID plays the role of the associated
public key whereas DID is the user secret key.

3. Sign: Given a message m and user secret key DID as input, choose

a random number r $← Zq, compute U = rQID, h = H1(m,U) and
V = (r + h)DID. The signature is generated as σ = (U, V).

4. Verify: To verify the signature σ = (U, V) of a messagem with identity
ID, check the validity of the tuple (P, Ppub, U + hQID, V by resolving
e(P, V) = e(Ppub, U + hQID).

For correctness, the following check equation should hold:

e(Ppub, U + hQID) = e(sP, rQID + hQID) (1)

= e(P, s(r + h)QID) (2)

= e(P, (r + h)DID) (3)

= e(P, V) (4)

3 ECC ELGAMAL SCHEME

3.1 The ECC ElGamal Scheme

For transfering the user secret key securely from server to client, we use the
ECC version of ElGamal public key encryption (PKE). The scheme consists
of 3 stages: Key Generation stage, Encrypt stage, and Decrypt stage. In detail,
the scheme is defined as follows:

1. Key Generation: Choose a prime generator based on the order of N ,
P←EN and a secret key x←Zq, then set Y = xP . Publish the public
key as (Y, P) and keep x as a secret.

2. Encryption: Generate a random k←Zq. Set C1 = kP and C2 = kY .
Then, map the message m as points Pm = f(m). The ciphertext would
be published as (C1, C2 + Pm).

International Journal of Cryptology Research 35

Wai-Choong Wong, Tiong-Sik Ng, & Ji-Jian Chin

3. Decryption: The ciphertext is obtained as (C,D). Set C ′ = xC. The
message points can be obtained by Pm = D − C ′ = (k(xP) + Pm) −
(x(kP)). Then, the original message can be obtained by inversing the
function m = f−1(Pm).

4 METHODOLOGY

In this section we describe the methodology of applying Tan et al. (2010)’s li-
brary in iOS mobile application development. Objective-C has been the native
programming language for developing an iOS application ever since Apple ac-
quired NeXT in 1996 (Cox and Love, 2015). Long before Apple gained its
ground of market share, it has always been providing support for Java, for ex-
ample the ”Java Bridge” which is the binding between Java and iOS’s native
application programming interface (API) known as Cocoa.

However, the unpopularity of ”Java bridge” among the Cocoa developers
and incompatibility of Cocoa’s key features with Java forced Apple to offi-
cially deprecate their support for ”Java bridge” in 2005 (Apple, 2015). Thus,
all the new features Cocoa introduced later than Mac OS X version 10.4 were
not available for Cocoa-Java programming interface. In 2014, another pro-
gramming language developed by Apple known as Swift was introduced to
replace the Objective-C language.

To apply the libraries introduced by Tan et al. (2010), translation from Java
to Objective-C is a must. Hence, a different approach other than ”Java Bridge”
must be made to link the libraries for both Java and Objective-C such as using
third party translations tools. Besides that, the mobile application development
also requires the knowledge of using the development tools provided by Apple.

4.1 Translation of Java libraries using J2ObjC

Java source code can be translated using a tool called J2ObjC which is an open-
source command-line tool developed by Google (Ball, 2015). This tool allows
developers to implement their Java source to be part of iOS application’s build

36 International Journal of Cryptology Research

Implementation of a Pairing-Based Identity-Based Signature on iPhones

by translating them to Objective-C. It supports most of the Java language and
runtime features such as generic types, threads, reflection and exceptions. The
goal of this tool is shared the application and data models written in Java to
other platforms such as GWT web apps, Android, and iOS applications.

However, platform-independent user-interface (UI) toolkit is not provided,
so developers are required to write their own iOS UI code using the related
Software Development Kit (SDK) provided by the platform they working on.
In this work, we designed our UI using Xcode, a native iOS Application Devel-
opment Tool (ADT) with code written in either Objective-C or Swift 2.1. The
requirements of J2ObjC were stated in (Ball, 2015), where users need a Mac
workstation installed with Mac OS X version of 10.9 or higher. Besides that,
users are also required to install Java Development Kit (JDK) with version 1.7
or higher on their Mac (Oracle, 2015). Lastly, users need to install the Xcode
version 6 or higher on their Mac.

Before we get started, we need to download and unzip the distribution
provided by Ball (2015), the version of J2ObjC we used for this work was
0.9.8.2.1. After we tested the translation with some example code we wrote
ourselves following the guide located here, we started working on the transla-
tion of pairing libraries.

There are a total of four libraries introduced by Tan et al. (2010): CpxBig-
integer, Line, Point and Curve. Our first attempt at direct translation did not
succeed due to the library’s dependencies of data types from each other. Hence,
our following attempts were done by merging all four libraries into a single one
and the translation was successful by following the J2ObjC guide. Two files
were generated in .m and .h format respectively. .h file is the header file while
.m file contains all the method declarations. Both are needed for our imple-
mentation of the IBS scheme and also the PKE scheme using Xcode.

We used some exclusive Java objects (data types) in our original implemen-
tation in Java platform such as the BigInteger from java.math and SecureRan-
dom from java.security. To reduce the complexities of our implementation, we
decided to combine our IBS scheme written in Java with the merged library in-
stead of finding third-party alternative Objective-C libraries that can provide
similar functions. Now, we are only required to call the methods and pass in

International Journal of Cryptology Research 37

Wai-Choong Wong, Tiong-Sik Ng, & Ji-Jian Chin

the desired input to test our IBS scheme and also the PKE scheme.

The size of the translated library is much larger compared to the original
Java libraries due to syntax differences between two programming languages.
However, no additional editing is needed to run our code.

4.2 Mobile application development using Xcode

Xcode is an integrated development environment (IDE) developed by Apple
as a native software development tools for OS X and iOS. First of all, before
we start to use our translated library, we need to link the J2ObjC to Xcode
following the guide provided by Cheah et al. (2015), details as below:

1. Replace the J2ObjC’s distribution directory to $distribution-path.

2. Select the project target in Xcode and click on the Build Rules tab.

3. Click the Add Build Rule button located at the bottom right of the panel.

4. Select ”Java source files” in the new rule’s Process option.

5. Add the following script in the Custom script text box:

(a) $distribution-path/j2objc -d ${DERIVED FILES DIR}
(b) -sourcepath ${PROJECT DIR}/$source-root

(c) –no-package-directories ${INPUT FILE PATH};

6. Click the + button in the Output Files panel, and add
${DERIVED FILES DIR}/${INPUT FILE BASE}.h

7. Click the + button again, and add
$DERIVED FILES DIR/${INPUT FILE BASE}.m

8. Update the Build Settings:

(a) In User Header Search Paths, add

i. $distribution-path/include and
ii. ${DERIVED FILES DIR}

38 International Journal of Cryptology Research

Implementation of a Pairing-Based Identity-Based Signature on iPhones

(b) In Library Search Paths, add
$distribution-path/lib

(c) In Other Linker Flags, add -ljre emul

9. Select Build Phases tab, open the Link phase and add:

(a) The libz.dylib library

(b) The Security Framework

(c) The libicucore.dylib library 1

10. Add the .m and .h files generated with J2ObjC to Xcode’s project direc-
tories

The updated build settings for our project allows Xcode to apply the trans-
lated libraries by simply importing the .h header file. The JRE emulation li-
brary from J2ObjC emulates a subset of Java runtime libraries and is essential
for the translated library to work properly.

Since our main goal is to test the simulation of IBS scheme by implement-
ing it as an iOS mobile application, our UI design is relatively simple as shown
in the left part of Figure 1. The right part of Figure 1 illustrates the completed
UI. First of all, four methods were implemented to represent the four stages of
the BLS-IBS scheme respectively. Execution of each method is represented by
two buttons. One of the buttons executes the respective method a single time
and shows the output in string format including the time taken for running a
single stage. Another button will execute the respective method multiple times
to calculate the average time taken. Figure 3 shows some blocks of code that
represent the functions of the buttons of our application. The flow of the pro-
gram is following the IBS scheme discussed in Section 2.

After the implementation of the IBS simulation, we tested the functional-
ity of the Elgamal PKE. Similar to the IBS, we also used a simple UI design,
as shown in the left side of Figure 2. The right side of Figure 2 illustrates
the completed UI of the PKE. The two buttons as shown were implemented to

1This is an extra step to link the JRE emulation library in step 8 above , thereby solving the
linker error mentioned by Cheah et al. (2015)

International Journal of Cryptology Research 39

Wai-Choong Wong, Tiong-Sik Ng, & Ji-Jian Chin

Figure 1: Mobile application UI design (left) and screenshot of iOS
mobile application(right) for IBS

Figure 2: Mobile application UI design (left) and screenshot of iOS
mobile application(right) for PKE

represent the Encrypt and Decrypt stages of the ECC ElGamal scheme respec-
tively.

40 International Journal of Cryptology Research

Implementation of a Pairing-Based Identity-Based Signature on iPhones

The setup stage based on the IBS was used to generate the point message
as the string to be encrypted. The Encrypt button would run the Setup stage
based on the IBS and then generate the original string to be encrypted, while
generating the public keys and secret keys as well. The Decrypt button would
then run the decryption of the ciphertext to show the original encrypted string.
The time taken for the Encrypt excludes the Key Generation stage since it is
similar to the IBS scheme. Figure 4 shows some blocks of code that represent
the functions of the buttons of our application.

5 SIMULATION RESULTS

In this section, we present the simulation results for the BLS-IBS and ECC
ElGamal scheme using translated ECC pairing libraries.

Figure 3: Blocks of codes for IBS button functions.

J2objcCurve IBS BLSSetupWithInt withInt is the method called to run the
Setup stage for IBS scheme. The passed arguments are 160 and 512 to rep-
resent the order and modulus bits of our elliptic curve respectively. This is
equivalent to 1024-bit of RSA or discrete logarithms (DLOG) security.

International Journal of Cryptology Research 41

Wai-Choong Wong, Tiong-Sik Ng, & Ji-Jian Chin

Figure 4: Blocks of codes for PKE button functions.

The method’s running time is calculated by calling mach absolute time().
Results were taken in nanoseconds but converted to milliseconds afterwards by
dividing the double type constant of 1,000,000.0. The loop button functions in
a similar way except it is calling the methods 20 times to calculate the average
time taken.

Other stages of the IBS scheme were implemented in a similar way as
shown in Figure 3. For Extraction stage, we use an email as the ID input
whereas some text that represent the message input were passed in for Signing
stage. Inputs of both stages were passed in as strings. For Verification stage,
the verify button will call the J2objcCurve IBS BLSVerify() method which re-
turns a string of ”True” or ”False” depending on the validity of the tuple as
explained in Section 2.

The PKE scheme also uses the same Setup stage that was used in the IBS
scheme for the key generation. Curve IBS KeyGen is called to generate the
public and private keys. The arguments 160 and 512 are also passed to rep-
resent a 1024-bit of RSA security. The remaining stages of the PKE scheme
were implemented as shown in Figure 4. For the Encrypt stage, the encrypt
button would call the method to return the encrypted message point. For De-
crypt stage, the decrypt button would then decrypt the encrypted point to return
back the original message point.

42 International Journal of Cryptology Research

Implementation of a Pairing-Based Identity-Based Signature on iPhones

Figure 5: IBS result screenshots taken from iPhone 4s(iOS 8.4).

Figure 6: PKE result screenshots taken from iPhone 6s(iOS 9.2).

The running time of each method is calculated using mach absolute time().
Similar to the IBS, the results were taken in nanoseconds but were converted
to milliseconds. The loop button calls the methods 20 times to calculate the
average time taken for each process.

This simulation experiment was conducted on multiple iOS devices with
different hardware specifications and also on the Xcode simulator from the
Mac Mini we were using. The results of the experiment are listed in Table 1
and Table 2. Figure 5 and Figure 6 consists of screenshots taken from various
iPhone devices after running the experiment.

The translated library has been proven to have the same functionality as
Tan et al. (2010)’s library. We also managed to obtain efficient results from
the implementation as iOS mobile application. Our results also show that the
simulator on Mac has the best results whilst the efficiency on mobile devices is
determined by their hardware specifications. The upgrade on OS version only

International Journal of Cryptology Research 43

Wai-Choong Wong, Tiong-Sik Ng, & Ji-Jian Chin

Devices OS Version Setup(ms) Extract(ms) Sign(ms) Verify(ms)
Simulator(Mac) OS X 10.11 250.4650631 114.4024077 138.9032575 225.5139707

iPhone 4s iOS 8.4 2760.469677 1059.206292 1343.33111 2261.52975
iPhone 4s iOS 9.2.1 2569.235804 1001.158285 1228.748246 2224.738048
iPhone 5s iOS 9.2.1 998.4872354 301.9295063 313.1813958 588.9880083
iPhone 6 iOS 9.2.1 469.7018542 165.122175 186.0620521 353.6549333

Table 1: Runtime Results for Cha-Cheon IBS Scheme.

Devices OS Version Encrypt(ms) Decrypt(ms)
Simulator(Mac) OS X 10.11 30.27794601 27.02684978

iPhone 4s iOS 8.4 250.723468 231.157386
iPhone 4s iOS 9.2.1 135.625709 127.8706345
iPhone 5s iOS 9.2.1 53.76583235 51.97524613
iPhone 6 iOS 9.2.1 34.11421335 30.50156715

Table 2: Runtime Results for ECC ElGamal PKE.

brings a slight improvement in performance.

6 CONCLUSION

In this work, we successfully developed a working mobile application simu-
lator for Cha-Cheon BLS-IBS and ECC ElGamal schemes by using the trans-
lated Java based libraries from Tan et al. (2010). The translated library was
proved functional by running the Setup, Extract, Sign and Verification algo-
rithms with reasonable running times simulated across multiple devices. Our
future work will extending the simulator to a client-server architecture.

44 International Journal of Cryptology Research

Implementation of a Pairing-Based Identity-Based Signature on iPhones

ACKNOWLEDGMENTS

The authors are thank the Ministry of Education Malaysia for financial assis-
tance under The Fundamental Research Project Scheme (No.: FRGS/2/2013/ICT07/MMU/03/5)
.

REFERENCES

Apple (2015). Cocoa API - Implementations and Bindings. https://en.
wikipedia.org/wiki/Cocoa_(API).

Ball, T. (2015). J2ObjC - Java to Objective-C Translator and Run-Time.
https://github.com/google/j2objc/releases.

Cha, J.-C. and Cheon, J.-H. (2003). An identity-based signature from gap
diffie-hellman groups. In ICCSA 2010, volume 2567, pages 18–30.

Cheah, Z.-Y., Teh, T.-Y., Lee, Y.-S., and Chin, J.-J. (2015). Simulation of a
pairing-based identity-based identification scheme in ios. In ICSIPA 2015,
Pullman Hotel, Bangsar, Malaysia.

Cox, B. and Love, T. (2015). Objective-C - Apple Development and Swift.
https://en.wikipedia.org/wiki/Objective-C.

Elgamal, T. (1985). A public key cryptosystem and a signature scheme based
on discrete logarithms. In Advances in cryptology, volume 196, pages 10–
18.

International-Data-Corporation (2015). International Data Corporation -
Smartphone OS Market Share for Q2 2015. http://www.idc.com/
prodserv/smartphone-os-market-share.jsp.

Oracle (2015). Oracle - Java SE Downloads. http://www.oracle.com/
technetwork/java/javase/downloads/index.html.

Pew-Research-Center (2015). Technology Device Ownership Statis-
tic. http://www.pewinternet.org/2015/10/29/
technology-device-ownership-2015/.

International Journal of Cryptology Research 45

https://en.wikipedia.org/wiki/Cocoa_(API)
https://en.wikipedia.org/wiki/Cocoa_(API)
https://github.com/google/j2objc/releases
https://en.wikipedia.org/wiki/Objective-C
http://www.idc.com/prodserv/smartphone-os-market-share.jsp
http://www.idc.com/prodserv/smartphone-os-market-share.jsp
http://www.oracle.com/technetwork/java/javase/downloads/index.html
http://www.oracle.com/technetwork/java/javase/downloads/index.html
http://www.pewinternet.org/2015/10/29/technology-device-ownership-2015/
http://www.pewinternet.org/2015/10/29/technology-device-ownership-2015/

Wai-Choong Wong, Tiong-Sik Ng, & Ji-Jian Chin

Tan, S.-Y., Heng, S.-H., and Goi, B.-M. (2010). Java implementation for
pairing-based cryptosystems. In ICCSA 2010, volume 6019, pages 188–
198.

46 International Journal of Cryptology Research

	Introduction
	Motivations and related work
	Contributions

	The Cha-Cheon IBS SCHEME
	Preliminaries
	Bilinear Pairings
	The Cha-Cheon IBS Scheme

	ECC ElGamal Scheme
	The ECC ElGamal Scheme

	Methodology
	Translation of Java libraries using J2ObjC
	Mobile application development using Xcode

	Simulation Results
	Conclusion

