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ABSTRACT 

Ciphers based on the irregularly clocked LFSR are one of the main and widely used 
types of stream ciphers. The simplest scheme use only two LFSRs; the first one is 
clocked regularly and its output controls the clocking of the second one which 
produce irregular output sequence. In general, the second register is clocked D or K 
times which is called Step(D,K) Generator. Most of the well known clock-controlled 
structure are a special case of the Step(D,K) Generator, e.g. Stop/Go generator is a 

Step(0,1) Generator. In this paper, we discuss the security of the Step(D,K) Generator 
respect to its parameters D and K.  We will calculate the probability, P(n), of 
appearing nth bit of the regular sequence into the output sequence. We will show that 
if P(n) is zero for some values of n, we can reduce the time complexity of the general 
attacks. In case of correlation attack based on the Levenshtein Distance, we improve 
the time complexity of the attack by O(E(2M-N-E)2L). Finally, some 
recommendations will be presented to answer “How we can choose good 
parameters?” 

 

 

INTRODUCTION 

In stream cipher design, the goal is to efficiently produce 

pseudorandom sequences which should be indistinguishable from truly 

random sequences. An important family of stream ciphers is Clock-
Controlled stream cipher which has several different types. The purpose in 

this structure is to destroy the linearity of the LFSR sequences by applying 

an irregular clocking, eliminating or repeating some bits, and hence provide 

the resulting sequence with a large linear complexity. The simplest schemes 
use only two registers; Usually, the first one called Control Register, CR, is 

clocked regularly, and its output controls the clocking of the second one 

called Generator Register, GR, which is produced an irregular sequence [1]. 
 

There are several kinds of clock-controlled scheme, e.g. Stop/Go 

Generator [1, 2], Step1/Step2 Generator [1], Shrinking Generator [4], Self-

Shrinking Generator [5], Alternative Step Generator [12], Alternative 
Step(r,s) Generator [13], and Jump Register which is proposed recently in 
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[6, 7, 8] and it is used in some candidates to the European 
ECRYPT/eSTREAM  project [9], e.g. Pomaranch [10] and Mickey [11]. 

 

Recently, jumping clock-controlled becomes interesting in the 
literatures, e.g. Step(D,K) Generator [1], Alternative Step(r,s) Generator, 

Pomaranch, Mickey and etc. The Step(D,K) Generator is a general form of a 

clock-controlled with jumping manner proposed by Gollmann and Chambers 

in [1]. 
 

Our motivation is finding an efficient method to analyze the stream 

ciphers based on jumping register, e.g. Step(D,K) Generator, Pomaranch and 
Mickey. In this paper, we will discuss the security of the Step(D,K) 

Generator according to its parameters D and K.  

 

 

 THE STEP(D,K) GENERATOR DEFINITION 

A Step(D,K) Generator composed of two registers; the first one, CR, 
is clocked normally but the clocking of the second register, GR, determined 

by the current state of the first register, CR. The second register clocked D 

times if the controller bit is 1 and K times otherwise. The controller bit can 

be determined with the output of a function, f, depending on the current state 
of the first register, CR. The simple structure of this system observed in 

figure 1. Most of the different clock-controlled generators can be derived 

from a Step(D,K) generator with special parameters, e.g. the Stop/Go 
Generator is a Step(0,1) Generator, the Step1/Step2 Generator is a Step(1,2) 

Generator,  the Alternating Step Generator is composed of two Step(0,1) 

Generator,  the Alternating Step(r,s) Generator is composed of Step(0,r) and 
Step(0,s) Generator. 

 

 
Figure 1:  Step(D,K) Structure 

 

Suppose {bt}=b1,b2…bt denotes the regular output sequence of GR 

and {un}=u1,u2…un denotes its irregular output sequence. In other words, 
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{un} is a subsequence of the sequence {bt}. Let {cn} denotes the output of 

the function f which determines the number of clock for GR at time n, and 

takes its elements from {D,K} set. If the feedback polynomials of CR and 

GR register are chosen a primitive polynomial of degree L1 and L2 
respectively, then the period, P, and the linear complexity, L, of the output 

sequence is [1]: 

 

P =(2
L1

 -1)(2
L2

 -1) (1) 

L = L2*A (2) 

 

Where, A denotes the primitive factors of (2
L1

-1), which are common 

with the factors of (2
L2

-1). In [1], it is showed that the output sequences of 
the Step(D,K) Generators have good statistical properties. 

 

 

THE STEP(D,K) GENERATOR’S SECURITY RESPECT TO 

ITS PARAMETERS 

In this section, the security of the Step(D,K) Generator depend on the 
parameters D and K is investigated. In this section, we suppose that D and K 

are nonzero positive known integer. Our main idea refers to a weakness 

arising from the probability of decimating a bit from the regular output 
sequence {bt} to produce the irregular output sequence {un}. If some bits 

from the sequence {bt} are deleted with probability close to 1, attacker can 

fine some information about the {bt} and reduce his attack’s complexity. 

Having more confusion, all bits in the {bt} should have the same probability 
to appear in the {un}. It is the main idea in our investigation about the 

security of the Step(D,K) Generator depend on the parameters D and K. 

 
In order to choose the n

th
 bits from {bt} to appear in {un}, we must to 

reach this bit with x jumps with D-length and y jumps with K-length. In 

other words, the following equation must to have at last one nonnegative 
answer: 

Dx + Ky = n              D, K, x, y ∈N (3) 

 

The equation (3) has an answer if and only if we have: 

ρ = gcd(D,K)|n (4) 
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In case of ρ >1, there are some values for n that they don’t satisfy 
condition (4) and there are no answer for (3). It means that we have some 

bits in the {bt} that they don’t turn up in {un} with probability equal 1. Only 

one bit from each ρ consecutive bits from {bt} has good chance to turn up in 

the {un}, and (ρ -1) bits will be deleted from {bt} certainly.  If (3) has an 

answer then it will have infinite answer in Z, but we want an answer in 
natural number set (N). It is possible that some n satisfy (4) but there is no 

answer in natural number set (N).  Therefore, the best choice for ρ is 1 to 
satisfy (4) for all values for n. So, we should have: 

 

gcd(D,K)=1  (5) 

 

Under this condition, the equation (3) has answer for any n in Z, but 

it is possible that there is not any nonnegative answer for x and y in N. In the 

rest of the paper, this problem is discussed by calculating the probability of 
appearing any bits from {bt} into {un}. Then, it will show that D and K must 

be a small number as much as possible. 

 
Theorem 1: If P(n) denotes the probability of appearing the n

th
 bit of {bt} 

into the output sequence{un} in the Step(D,K) Generator, we have: 

 

P(n)=δ(n-1)+PDδ(n-(D+1))+ϕ(n-(D+2))P(n-D)PD+ϕ(n-(K+1)) 

P(n-K)PK 

(6) 

 
where PD is the probability of cn=D and PK=1-PD is the probability of cn=K. 

the functions ϕ(n) and δ(n) are defined in (7): 
 

0 0
( )

1 0

n
n

n
δ

≠
= 

=

         and       
0 0

( )
1 0

n
n

n
ϕ

<
= 

≥

 
 

(7) 

 
Proof: Without loosing any generality, we can suppose that D<K and the 

first bit of {un} is the first bit in {bt}, i.e. u1=b1, Therefore we have: 

 

n=1            ⇒  P(n)=1 (8) 
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For n=1 in equation (6), in the right hand, all terms are zero except 

δ(n-1) that it is equal 1. So, equation (6) is true for n=1. We supposed that 
D<K, so no bits can turn up in the output sequence, if it is between the first 

bit in {bt} and (D+1)
th
 bit. Therefore we have: 

 

1<n≤D      ⇒ P(n)=0 (9) 

 

For 1<n≤D, in the right hand of (6) all terms are zero. So, equation 
(6) is true in this case. The probability of applying exactly the D clocks to 

produce the next output bit is PD. Therefore we have: 

 

n=D+1     ⇒ P(n)=PD (10) 

 

To choose any bits between (D+1)
th

 bit and K
th
 bit from {bt}, we have 

to use irregular clocking only with D-jump. So, to appear n
th
 bit, n≤K, from 

{bt} in the output, the (n-D)
th

 bit must be chosen in the previous stage and 

then we have to apply D clocks to GR.  Therefore we have: 
 

D+1<n≤K     ⇒ P(n)= P(n-D)PD (11) 

 

Where P(n-D) is the probability of choosing the (n-D)
th

 bit from {bn} 

and PD is the probability of applying D clocks to GR. For D+1<n≤K, in the 

right hand of (6), only ϕ(n-(D+2)) is nonzero and it is equal 1. So, the (6) is 
true in this case. To choose any bits in area n>K, there are two ways. The 
first one is that we have to choose the (n-D)

th
 bit in the previous stage and 

apply D clocks to GR. The second one is that we have to choose the (n-K)
th
 

bit in the previous stage and apply K clocks to GR. Therefore, we have: 

 

n>K     ⇒ P(n)= P(n-D)PD + P(n-K)PK (12) 

 

For this area, n>K, in the right hand of (6) the ϕ(n-(D+2)) and ϕ(n-
(K+1)) are nonzero and they are equal 1. So, the equation (6) is true.  

Therefore, from (8) to (12) in general we have: 

 

P(n)=δ(n-1)+PDδ(n-(D+1))+ϕ(n-(D+2))P(n-D)PD+ϕ(n-(K+1)) 
P(n-K)PK 

(13) 
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By (6), we are able to calculate and plot the P(n) for any D and K 
respect to n easily. Figure 2 and 3 illustrate the graph of P(n) for some D and 

K. It can be observed easily that P(n) tend to a fixed value for small 

parameters D and K. We can divide the curve of P(n) into two parts. The 
first part is the area that the amount of P(n) changes rapidly. We refer to this 

part by “Transition Area”. The second part is the area that the value of P(n) 

is fixed. The length of transition area is independent from the length of 

register GR, but the parameters D and K. For small D and K, the length of 
this area is short, but it is very long for big parameters which illustrated in 

figure 4.  

 
The transition area is very important, because all bits that appear in 

the output during this area belong to the register GR’s initial state. From the 

variety of P(n) in this area, attacker can recognize that which bits of the 

initial state will appear in the output with good probability. So, he can find 
some information about the initial state. If the length of the transition area 

becomes bigger and the range of variety in the curve becomes bigger, 

attacker can fine more information about the initial state. The result of our 
above discus is that the length of transition area should be short as much as 

possible to have a good stream cipher. 

 
Our investigation has illustrated that for the large parameters D and 

K, we have a large ripple in the transition area and the length of transition 

area become bigger. For example, figure 4 illustrates that for K=17 and any 

amount of D which satisfy relation (5), some n exist such that the equation 
(3) doesn’t have any nonnegative answer and P(n) is zero. In these 

examples, the length of transition area is very large. Attacker can reduce his 

complexity with eliminating the bits whose probability to appear in the 
output is close to zero. In most of the general attacks on the stream cipher, 

the time complexity depends to the sequences that used in the attack, e.g. 

correlation attacks. 
 

Figure 5 illustrates some systems which are suitable for using in 

stream ciphers, because they have very short transition area and also all bits 

from {bt} has the same probability to appear in the output sequence. But, the 
systems illustrated in figure 4 do not have these properties. Most of the 

people believe that more eliminated bits from the regular output sequence 

can hide more information about the initial state. For example, in jump 
registers or ASG(r,s), designers have this idea. In [3], it is showed that the 

security of ASG(r,s) is not more than a original ASG. In next section, we 



Security Analysis of the Step(D,K) Generator Respect to its Parameters 

 

 International Journal of Cryptology Research 45 

 

will show that this idea is not true, if attacker know the position of deleted 

bits. 

 

 

IMPROVE THE ATTACKS USING OUR OBSERVATION 

In this section, we explain that how we can use of our observation to 
improve the attacks on the Step(D,K) Generator. In the most of the attacks 

on the clock-controlled generators, e.g. [14-17], the time and space 

complexity depend on the length of the regular sequences which are used in 

the attack to find the initial state. Our observation can reduce the length of 
the regular sequences and improve the attacks.  

 

For example, we explain that how our idea can improve the 
correlation attack based on the Levenshtein Distance presented by J. Golic in 

[17]. The same idea can be used to improve other attacks. In the correlation 

attack based on the Levenshtein Distance, we have to guess the length of the 

regular sequence, M, which can produce the given irregular output. In case 
of Step(1,2) Generator, Golic recommended to consider M=3N/2 while N is 

the length of the given irregular output. The time and space complexity of 

finding the Levenshtein Distance is Ct=O(M(M-N)) and Cs=O(M-N) 
respectively. As you can see, both complexities depend on the length of the 

regular sequence, M. the time complexity of this correlation attack is equal 

to C=O(M(M-N)2
L
) while L is the length of LFSR. To use of our observation 

to improve Golic’s attack, we have to eliminate E bits from the original 

sequence that their probability to appear in the output is close to zero. Then, 

we have to use the remained bits, M*=M-E, as the regular sequence to find 

the Levenshtein Distance. If we eliminate E bits from the regular sequence, 
the time complexity of the algorithm that finds the Levenshtein Distance 

will reduce to Ct1=O(M*(M*-N)) which is O(E(2M-N-E)) better than Golic’s 

algorithm: 
 

Ct1=O(M*(M*-N))=O((M-E)((M-E)-N))=Ct-O(E(2M-N-E)) (14) 
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Figure 2: P(n) for some small D and 

K 

 

 
Figure 3: P(n) for K=5 and 

D=1,2,3,4 

 

Therefore the time complexity of this attack will reduce to: 

 

C*=O(M*(M*-N)2
L
)=C-O(E(2M-N-E)2

L
) (15) 

 

It means we can improve the time complexity of the attack by 

O(E(2M-N-E)2
L
). And also for the space complexity of the algorithm that 

finds the Levenshtein Distance we have: 
 

Cs1=O(M*-N)=O((M-E)-N)=Cs-O(E) (16) 

 

The correlation attack based on the Levenshtein Distance [17] 
produce n0= 1+(2

L
-2)Pf possible initial state as results that we have to check 

them to find the correct answer. Pf is the probability of “The false alarm”. It 

is the probability of event that a sequence is wrongly considered as the 

generator sequence for the given irregular output sequence. When we reduce 
the length of the regular sequences by using our idea, we reduce the 

flexibility of regular sequences to match with the given irregular output. 

Therefore, we reduce number of “The false alarm” and its probability, Pf. It 
means we reduce the number of possible solution, n0. According to the 

section 2, for large parameters D and K, the value of E will be increase and 

we will have more improvement in the attacks complexity. If we eliminate 
only one bit, i.e. E=1, we will reduce the complexity of the attack by O((2M-

N-1)2
L
) which is significant reduction. 
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Figure 4: P(n) for K=17 and 

D=1,9,14,16 

 
Figure 5: P(n) for some strong 

systems  

 

 

CONCLUSIONS AND OPEN PROBLEMS 

In this paper, we explained our observation about the Step(D,K) 
Generator and discuss the effect of the parameters D and K on the security of 

the structure. We support our observation with some examples and our result 

from implementations. We explain that the bad parameters for the Step(D,K) 

Generator can release some information about the initial state and cause to 
decrease the complexity of the attacks. For example, we show that how we 

can reduce the time complexity of the correlation attack based on the 

Levenshtein Distance by O(E(2M-N-E)2
L
). Therefore, we have to be careful 

to use of clock-controlled stream ciphers. In the following, we recommend 

some important notes to design the Step(D,K) Generators: 

 

1. The curve of P(n) should have a short transition area. 
2. The curve of P(n) should be smooth in transition area. 

3. The parameters D and K should be co-prime. 

4. The parameters D and K should choose a small number as much as 
possible. 

5. The security of system should be investigated by drawing the graph 

of P(n) for designed system. 
 

To continue this work in the future, we try to use of our observation 

to apply an attack on the jump register which is used in some stream ciphers, 

e.g. Pomaranch and Mikey. They use of registers with large jumping, so we 
believe that our observation can reduce the complexity of attacks on these 

algorithms. 
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