
International Journal of Cryptology Research 1(2): 235-243 (2009) 

 

Improving Security Performance with Parallel Crypto  

Operations in SSL Bulk Data Transfer 

 
1
Hashem Mohammed Alaidaros, 

2
Mohamed Othman  

and
 1
Mohd Fadlee A. Rasid

 

1
Department of Computer and Communication Systems Engineering, 

Faculty of Engineering, Universiti Putra Malaysia 
2
Department of Communication Technology and Network, 

Faculty of Computer Science and Information Technology, 

 Universiti Putra Malaysia 

E-mail: aidaros.dev@gmail.com; mothman@fsktm.upm.edu.my 

 

 

ABSTRACT 

Information security, including integrity and privacy, is an important concern among 
today’s computer users due to increased connectivity. Despite a number of secure 
algorithms that have been proposed, the trade-offs made between security and 
performance demands further research toward improvement. For example, in bulk 

data transfer, especially in large messages, the secured processing time takes much 
longer than non-secured processes. This is due to crypto operations, which include 
symmetric encryption operations and hashing functions. In the current bulk data 
transfer phase in Secure Socket Layer (SSL), the server or the client firstly calculates 
the Message Authentication Code (MAC) of the data using HMAC operation, and 
then performs the symmetric encryption on the data together with the MAC. This 
paper proposes a new algorithm which provides a significant performance gain in bulk 
data transfer without compromising the security. The proposed algorithm performs the 

encryption of the data and the calculation of the MAC in parallel. The server 
calculates the MAC of the data at the same time as the encryption process of the data. 
Once the calculation of the MAC is completed, only then the MAC will be encrypted. 
The algorithm was simulated in two processors with one processor performing the 
MAC calculation and the other on encrypting the data, simultaneously. The 
communication between the two processors was done via Message Passing Interface 
(MPI). Based on the performance simulations, the new parallel algorithm gained 
speedup of 1.74 with 85% efficiency over the sequential (current) algorithm. 
 

Keywords: Information security, bulk data transfer, parallel crypto operations, 
hashing, encryption. 

 

 



Hashem Mohammed Alaidaros, Mohamed Othman & Mohd Fadlee A. Rasid 

 

236 International Journal of Cryptology Research 

 

INTRODUCTION 

Cryptography has become an essential component of modern 

information systems providing the mechanisms necessary to provide 

integrity, accuracy and confidentiality in public communication mediums 
such as the Internet. Information security including integrity and privacy is 

an important concern due to increasing connectivity among today’s 

computers. Despite a number of secure algorithms that have been proposed, 
the trade-offs made between security and performance demands further 

research toward improvement (Zhao et al., 2005; Elgohary et al. 2006; 

Dongara and Vijaykumar, 2003; Hodjat and Verbauwhede, 2004). For 
example, in bulk data transfer, the secured processing time takes much 

longer than non-secured processes. This is due to crypto operations, which 

include symmetric encryption operations and hashing functions. 

 
This paper focuses on bulk data transfer stage which deals with large 

amounts of data. While private-key and hashing are computationally 

intensive in large amounts of data (although not as much as in public-key), 
the main reason for high consumption is lack of parallelism. Modern 

computers exploit parallelism to achieve performance, and the lack of 

parallelism obstructs achieving fast response times. This paper proposes a 

new algorithm which provides a significant performance gain in bulk data 
transfer without compromising the security. In the current bulk data transfer 

phase in Secure Socket Layer (SSL), the server or the client first calculates 

the Message Authentication Code (MAC) of the data using HMAC 
operation, and then performs the symmetric encryption on the data together 

with the MAC. 

 
The proposed algorithm performs the encryption of the data and the 

calculation of the MAC in parallel, while preserving the same security level. 

The server calculates the MAC of the data at the same time as the encryption 

process of the data. Once the calculation of the MAC is completed, only then 
the MAC will be encrypted. The algorithm was simulated in two processors 

with one processor performing the MAC calculation and the other encrypting 

the data, simultaneously. The communication between the two processors 
was done via Message Passing Interface (MPI). The following section 

presents an overview of the SSL privacy and integrity in bulk data transfer 

which are provided by private-key and HMAC respectively,. The parallel 
crypto operations are presented in section 3. Results discussion and 

conclusions are given in section 4 and 5 respectively.   

 



Improving Security Performance with Parallel Crypto Operations in SSL Bulk Data Transfer 

 

 International Journal of Cryptology Research 237 
 

CRYPTOGRAPHY OVERVIEW 

Private Key Encryption 

The Rijndael Algorithm was chosen by the US National Institute of 

Standards and Technology (NIST) as the new Advanced Encryption 
Standard (AES). Its security is based on the secrecy of the key and is 

primarily used for bulk data encryption. For the block cipher encryption, one 

of the most popular modes is chaining-block-cipher (CBC) mode. In this 
mode, the plain text is XORed with the previous cipher block before it is 

encrypted. This ensures dependency between blocks of data within the 

message and removes the potential for parallelism across individual blocks 
of data (Stallings, 2003). 

 

Padding 

AES is a block cipher; it works on a unit of fixed size, meaning that it 
divides the data into blocks of 16 bytes. In figure 1 (a) before encryption, if 

the message length n is not a multiple of 16 Bytes, then padding is needed. It 

will append zeros to the end of data array until the data length is a multiple 
of 16 bytes (Stallings, 2003). 

 

 

 

 

 

 

 

 

 

 

 

 

 
 
Figure 1(a): AES  Figure 1(b): HMAC_SHA1 

 

HMAC 

Hash functions map an arbitrary long message to a fixed-size hash value. In 
2002 the NIST Secure Hash Standard proposed the use of Secure Hash 

Algorithm (SHA1). Message authentication is achieved via the construction 

of a message authentication code (MAC). MACs based on cryptographic 



Hashem Mohammed Alaidaros, Mohamed Othman & Mohd Fadlee A. Rasid 

 

238 International Journal of Cryptology Research 

 

hash functions, such as SHA1, are known as Keyed-Hash Message 
Authentication Code (HMAC), proposed by FIPS (FIPS 2002). The message 

authentication algorithm is called HMAC, while the result of applying 

HMAC is called the MAC. The purpose of a MAC is to authenticate both the 
source of a message and its integrity.  

 

HMAC with its underlying SHA1 are called HMAC-SHA1 or HSHA1. As in 

Figure 1(b) HSHA1 has two functionally distinct parameters, (1) a message 
input of length n and (2) a secret key of length 20 bytes known only to the 

message originator and intended receiver(s), it produces 20 bytes as output. 

HMAC-SHA1 is faster than AES. 

 

Secure Sockets Layer (SSL) Protocol and Bulk Data Transfer Load 

SSL is one of the most widely used security protocols on the Internet. It is 

implemented at the transport layer of the protocol stack. SSL offers the basic 
security services of encryption, source authentication, and integrity 

protection for data exchanged over underlying unprotected networks. Details 

on SSL protocol are available elsewhere (Rescola, 2000). 

 

The two phases of an SSL connection, handshake and data transfer are worth 

considering separately. Handshake happens only once per connection, but is 
comparatively expensive. Each individual data record is comparatively 

cheap, but for connections involving large amounts of data the cost of the 

data transfer phase eventually dominates the cost of the handshake. 

Nevertheless, the cost of data transfer is mostly due to cryptography 
(Rescola, 2000). 

 

The portion of the private key encryption and hashing are increasing as we 
increase the request file size. However, as this part is the main contributor to 

the bulk data transfer phase, it can become significant at very large file size, 

over 32KB, since the private key and hashing are ones of the main operations 
in the SSL bulk data transfer.  

 

 

PARALLEL MODEL IN CRYPTO OPERATIONS 

Existing Sequential Model 

In current bulk data transfer phase in SSL, the message is broken into 

fragments F up to 16384 bytes, each fragment will therefore be treated 

separately. The server or the client firstly calculates the Message 



Improving Security Performance with Parallel Crypto Operations in SSL Bulk Data Transfer 

 

 International Journal of Cryptology Research 239 
 

Authentication Code (MAC) of the fragment using HMAC operation 
followed by padding if needed, and then performs the symmetric encryption 

E on the fragment together with the MAC to produce the cipher text as 

shown in Figure 2(a). The sequential algorithm is simulated on one processor 
P0. Compression operation is not considered since it is optional. 

 

Proposed Parallel Model 

Our model proposes a new parallel security algorithm that provides integrity 
by HMAC-SHA1 and privacy by AES, without compromising security. As 

shown in Figure 2(b) the proposed parallel algorithm performs the 

encryption of the fragment and the calculation of the MAC in parallel, 
preserving the same security level. The algorithm was simulated in two 

processors, P0 and P1, with one processor performing fragment encryption 

and the other a MAC calculation, simultaneously. The server calculates the 

MAC of the fragment at the same time as the encryption process of the 
fragment. Once the calculation of the MAC and padding are completed, it 

will be sent to P0. Once P0 receives it from P1, only then the padded MAC 

will be encrypted.  

 

Simulation Platform 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

        

          Figure 2 (a): Sequential algorithm            Figure 2(b): Proposed Parallel algorithm 

 

 



Hashem Mohammed Alaidaros, Mohamed Othman & Mohd Fadlee A. Rasid 

 

240 International Journal of Cryptology Research 

 

Figure 2 (a) and (b) has been simulated and produced the same output 
without interference. However, relative comparison of these benchmarks is 

more meaningful: each implementation is in the same OS platform, 

programming language, API (Application Programming Interface), coding 
style, and compiler. The slave machine we use is under Linux OS with two 

Intel® Xeon processors running at 2.3GHz and with 774 MB of shared 

memory. The slave machine is clustered with the master machine. The 

master machine specifications (performance, speed etc) are the same as the 
slave machine, but uses only a single processor.   

 

We use an AES with 128 of key size in CBC mode as an encryption 
algorithm and SHA1 as the underlying hash algorithm in HMAC, so the 

overall operation can be written as AES128-CBC-SHA1. Note that AES is 

always slower than HMAC-SHA1, although the latter uses hashing twice. 

The machine is installed with a Personal Version of CryptoSys API as 
cryptography library in C language (CryptoSys, 2006). 

 

Implementation in MPI 

MPI stands for "Message Passing Interface". It is a library of functions (in C) 

that are inserted into source code to perform data communication between 
processors (Quinn, 2003). Our parallel version has been developed starting 

from a sequential version in C that has been extended through a set of 

procedures written in C plus MPI primitives. MPICH version 1.2.7p1 is 
installed in our machine as MPI library and compiler (MPICH, 2005). The 

development from the sequential to parallel version has shown reduction in 

the processing time.  

 

 

PERFORMANCE RESULTS 

Speedup Over Sequential 

We will first present that our parallel approach achieves good speedup over 

sequential approach (uniprocessor). In Fig 3, we show the execution time in 

milliseconds spent by parallel and sequential processes varying the size of 

messages from 16KB up to 1MB. Since AES and HSHA1 increase as 
message size increases, we observed that the sequential and parallel 

execution times increased as message size increased in the same ratio. 

 



Improving Security Performance with Parallel Crypto Operations in SSL Bulk Data Transfer 

 

 International Journal of Cryptology Research 241 
 

As is evident from the chart (Figure 3), we achieved good speedup by 
parallelizing the cipher operations because the parallel execution time is less 

than the sequential time, by a significant ratio.  

 
For example, in 256K bytes file size, when we use the sequential process it 

costs 13 ms, but when we use our proposed process it costs only 7.4 ms.   

Speedup is the ratio between sequential execution time and parallel 

execution time (Quinn, 2003). The efficiency of a parallel program is a 
measure of processor utilization. We define efficiency to be speedup divided 

by the number of processors used (two processors in our case) (Quinn,2003). 

 
 

Efficiency =  

 

 
Since the AES128-CBC and HMAC-SHA1 increase at the same ratio 

(linearly) when message size increases, the message size does not affect the 

speed up. We achieved speedup of about 1.74 and efficiency of 87%. Parallel 
overheads obstruct efficiency in order to reach the maximum as we will see 

in the next section.  

 

Parallel Overhead 

The next result is the discussion on the execution time breakdown in parallel 

overheads which obstruct the maximum achievable speedup. Figure 4 shows 

the parallel overhead analysis in our parallel code simulation. All overheads 
increase linearly as message size increases since they are called as many 

times as the number of fragments. Figure 4 shows the parallel overheads 

execution time in microseconds. It can be seen that the barrier 
synchronization time takes a very large portion of about 65% of the parallel 

overheads. This is obvious since the HMAC and padding are faster than 

AES, so it delays the P1 until P0 processes the fragment. It also shows that 
the portion of send and receive overheads take almost the same amount of 

time about, of 15% each. Send overhead does not depend on crypto operation 

speeds, and receive overhead is not obstructed since the HMAC is faster than 

AES.  
 

 

 
 

 

 

sequential execution time

processors used parallel execution time×



Hashem Mohammed Alaidaros, Mohamed Othman & Mohd Fadlee A. Rasid 

 

242 International Journal of Cryptology Research 

 

AES128-CBC-SHA1

0

10

20

30

40

50

60

16 64 128 256 512 1000

Message Size (KB)

E
x
e
c
u

ti
o

n
 T

im
e
 (

m
s
)

Sequential

Parallel

AES128-CBC-SHA1

0

1000

2000

3000

4000

5000

6000

16k 64k 128k 256k 512k 1000k

Message size (Byte)

P
a
rr

a
ll

e
l 

o
v
e
rh

e
a
d

 (
m

ir
c
ro

 

s
e
c
)

MPI_Send

MPI_Receive

MPI_Barrier

 

 

 

 

 

 

 

 

 

    
   Figure 3: Parallel & Sequential Execution Time 

 

                                                       

 

 

 

 

 

 

 

 

 
Figure 4: Parallel Overheads Execution Time 

 

 

CONCLUSIONS 

This paper proposed a new algorithm which provides a significant 

performance gain in bulk data transfer without compromising the security. 

The proposed algorithm performs the encryption of the data and the 

calculation of the MAC in parallel. The algorithm was simulated in two 
processors with one processor performing the MAC calculation and the other 

encrypting the data, simultaneously. The communication between the two 

processors was done via Message Passing Interface. Based on the 
performance simulations, the new parallel algorithm gained speedup of 1.74 

with 85% efficiency over the sequential (current) algorithm. With respect to 

parallel overhead, we conclude that the barrier synchronization time takes a 
very large portion of about 65% compared with the communications time. 

This is obvious since the HMAC and padding are faster than AES.  

  



Improving Security Performance with Parallel Crypto Operations in SSL Bulk Data Transfer 

 

 International Journal of Cryptology Research 243 
 

REFERENCES 

CryptoSys. 2006. Crypto System API. Accessed on 1 May 2006. 

www.cryptosys.net. 

 
Dongara, P. and Vijaykumar, T. 2003. Accelerating Private-key 

cryptography via Multithreading on Symmetric Multiprocessors. In 

Proceedings of the IEEE International Symposium on Performance 

Analysis of Systems and Software. 

 

Elgohary, A, Sobh, T. and Zaki, M. 2006. Design of an enhancement for 

SSL/TLS protocols, Computers & Security. 

 

Federal Information Processing Standards Publication. 2002. The Keyed-

Hash Message Authentication Code (HMAC), US 
 

Hodjat A. and  Verbauwhede I. 2004. A 21.54 Gbits/s Fully Pipelined AES 

Processor on FPGA. IEEE Symposium on Field- Programmable 
Custom Computing.  

 

MPICH. 2005. MPICH-A Portable Implementation of MPI, Accessed on 1 

May 2006. http://www-unix.mcs.anl.gov/mpi/mpich1 

 
Rescorla, E. 2000. SSL and TLS Designing and Building Secure System , 1

st
 

ed., New Jersey : Pearson Education Corporate Sales Division. 

 

Quinn, M. 2003. Parallel Programming in C with MPI and OpenMP, 1
st
 ed., 

New Jersey : McGraw-Hill higher education. 
 

Stalling, W. 2003. Cryptography and Network Security, 3
rd
 ed.,  New Jersey: 

Pearson Education International. 
 

Zhao, L., Makineni, S., and Bhuyan L. 2005.  Anatomy and Performance of 

SSL processing, In Proceedings of the IEEE International Symposium 

on Performance Analysis of Systems and Software. 

 


