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ABSTRACT 

We describe the ���-cryptosystem, a new public key cryptosystem that is built by 

utilizing the classical one-way chaotic beta-transformation mapping given by        

�� � ��	mod 1�. The ���-cryptosystem represents its private keys as a vector 
������� 

and uses the parallelogram law to prove that encryption and decryption does indeed 
occur. The mathematical hard problem for this system is likely to be harder than the 
classical Discrete Log Problem and to some extent probably equal or slightly better 
than the Elliptic Curve Discrete Log Problem (ECDLP).  With the correct choice of �, 

� and generator point �	0�, the generator point �	0� when iterated via the ��� 

function will have an order (i.e. period/cycle) of 2��� where k is the length of the 

private key. Because of this fact, the ���-Cryptosystem maybe more secure than the 

Elliptic Curve Cryptosystem (ECC). 

 
Keywords: beta-transformation, chaotic map, asymmetric cryptography 

 

 

INTRODUCTION 

Noise like and deterministic features of chaotic maps make it a good 
mathematical candidate to be utilized as a cryptosystem. Since the 1990’s 

attempts have been made to design cryptosystems that are based on chaotic 

maps. The work by Alvarez and Li [1] describes a comparison table between 

chaos and cryptographic properties. We list back the properties here. 
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TABLE 1 
 

No. Chaotic property Cryptographic property Description 

1. 
Ergodicity. Confusion. 

The output has the same 
distribution for any input. 

2. 
Sensitivity to initial 
conditions / control 

parameter. 

Diffusion with a small 
change in the plaintext / 

secret key. 

A small deviation in the 
input can cause a large 
change at the output. 

3. 

Mixing property. 
Diffusion with a small 

change in one plain-block 
of the whole plaintext. 

A small deviation in the 
local area can cause a large 
change in the whole space. 

4. 
Deterministic 

dynamics. 
Deterministic pseudo –

randomness. 

A deterministic process can 
cause a random-like 

(pseudo-random) behavior. 

5. 
Structure complexity. 

Algorithm (attack) 
complexity. 

A simple process has a very 
high complexity. 

 

Other characteristics that make chaotic maps an excellent candidate 

for cryptosystems are that initial distance between 2 arbitrary points will 

increase after n iterations (we will discuss more about this in section 2) and 
that the periodic points of a chaotic map f are repelling. That is, if a trajectory 

�	�� happens to come close to a periodic cycle for some k, it will separate 

from it for indices greater than k. 
 

Most cryptosystems that are designed by utilizing the chaotic maps 

are symmetric. Their characteristics that are sensitive to initial conditions and 
their spreading out of trajectories over the whole interval seems to be a 

model that satisfies the classic Shannon requirements of confusion and 

diffusion, which are fundamental in designing symmetric cryptosystems .  

Among techniques that are notable in designing symmetric cryptosystem 
based on chaotic maps are the Masuda and Aihara technique [10] which 

discritizes a chaotic map. The Yi, Tan and Siew technique [16] that re-

defines the chaotic map and the Baptista cryptosystem [2], [3], [12], [13] that 
utilizes the ergodic property of a chaotic map. 

 

Attempts have also been made to design asymmetric cryptosystems 

based on chaotic maps. Notable designs are by Kocarev and Tasev, which is 
based on the Chebyshev polynomials [8]. However, it has been 

cryptanalyzed by Bergamo [4]. In 2004 Kocarev, proposed an RSA-like 

encryption algorithm– based on torus automorphisms and is claimed to be as 
secure as RSA [9]. In 2005 Klein et al. designed a key-exchange protocol 

that comprises two parties with chaotic dynamics that are mutually coupled 
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and undergo a synchronization process [6]. In 2005 Bose utilized multiple 

chaotic systems and a set of linear maps for key exchange [5]; and it has 
been cryptanalyzed by Wang et.al [15] and Zhang [17]. Tenny and Tsimring 

used distributed nonlinear dynamics for designing a public-key encryption 

scheme [14]. They adopted synchronization of chaos but could not put 
forward a realistic example. 

 

It is important in attempting to design an asymmetric cryptosystem 

based on chaotic maps to include discussions regarding additional 
advantages over current asymmetric cryptosystems based on number 

theoretic principles. A formal hard mathematical problem must be stated in 

order for further research to justify the claim. Another integral part of 
discussion is the minimum key size needed for the asymmetric cryptosystem 

to be secure. Key size is an important element of discussion to make the 

asymmetric cryptosystem based on chaotic maps under scrutiny relevant in 

terms of implementation. Much has been said about the advantages of the 
Elliptic Curve Cryptosystem (ECC) that employs a key at minimum length of 

160-bits. Introduced by Koblitz [7], the small key length makes it 

advantageous over RSA (which needs keys with a minimum length of 1024-
bits) when attempting to deploy security on an environment with limited 

processing power, storage space and power consumption. 

 
In this paper, we propose an asymmetric cryptosystem based on the 

chaotic beta-transformation. In section 2, we discuss the Lyapunov Exponent 

which describes chaos for a given map. In section 3 we will describe the beta 

transformation and some underlying mathematical results related to it. In 

section 4, we describe the ��� cryptosystem on the continuum 	0,1�. We 

also describe the underlying hard mathematical problem which forms the 

basis of this asymmetric cryptosystem. The reader will also be able to 

observe the simplicity of the mathematical operations involved in the 
cryptosystem. Simplicity of the encryption and decryption operation should 

have overwhelming impacts on the performance of this cryptosystem when 

implemented. In section 5, we show that the  ��� function under minimum 

conditions is a one-to-one function. Finally, in section 6 we conclude the 
paper.  

 

 

THE LYAPUNOV EXPONENT 

Let us observe 2 arbitrary points �� and �� � ∆��. These 2 points will 

generate an orbit based on a mapping or a system of mappings. We will 
assume that the orbit will take a function which utilizes time as its parameter. 

If we take one of the points to be the reference point, the divergence between 



M.R.K. Ariffin & N.A. Abu 

 

152 International Journal of Cryptology Research 

 

those 2 points could also be assumed as a function which utilizes time as its 

parameter. 
 

The Lyapunov Exponent given by 

 

� � lim� ∞
∆"# �

1
$ ln |∆�	��, $�|

∆��
 

 
determines whether the orbits of a certain mapping exhibits chaotic feature or 

not. If  � ' 0 the orbits produced by the mapping exhibits chaotic effects.  
 

Let us consider a one-dimensional dynamical system �: )  ). When 

� ' 0, for every * ' 0, there exists +�, +, - ., there exists � - /01,02 , and 

for every + - 3+� , +,4, for every 5� , 5, - /01,02, we have                  

exp9	� : ;�+<|5� : 5,| = |�0	5�� : �0	5,�| =  exp9	� : ;�+<|5� � 5,|.  
 

This means that the initial distance |5� : 5,| between 2 arbitrary 

points 5�, 5, (which are elements of the neighborhood /01,02  of point x) after 

n iterations will increase by at least exp9	� : ;�+< times. If the Lyapunov 

exponent is either 0 or less than 0, the orbits produced by the mapping does 

not exhibit chaotic effects. 

 

 

THE BETA-TRANSFORM 

Definition 1.1 

 

Let � ' 0, the beta-transformation is given by ��	�� � ��	mod 1�, where 

��: 	0,1�  	0,1�. It could also be written iteratively in the following form: 

�	> � 1� � ��	>�	mod 1� where > � 0,1,2, … and �	0� is the initial 

condition. 
 

The Lyapunov exponent for the beta-transformation is given by 

� � log �. The Lyapunov exponent is always positive for � ' 0. Thus, the 

orbits produced by this mapping exhibit chaotic features.  For � � 2, the 
beta-transformation is also known as the dyadic transformation. Well known 

results regarding the dyadic transformation facilitates operations for other 

integer values of �. Observe that �	mod 1� represents the fractional part of x. 

As an example, 3.142	mod 1� � 0.142. In the binary number system 

multiplying by 2 corresponds to the left shift by one bit and taking the 

fractional part corresponds to the upper bit truncation. Therefore �	> � 1� 

is the Bernoulli shift of �	>�. As an example (in base 2 representation) let 

�	0� � 0.1010100 …, multiplying by 2 we will have 1.010100…. To take 
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the modulus we simply drop the integer part, and we have �	1� �
0.010100 …. Continuing we have �	2� � 0.10100 …. The sequence 
	�	0�, �	1�, �	2�, … � is called the orbit of the point �	0�. 

 

For any other integer value of �, the process is simply a combination 

of shifting the bits and adding it to the previous string of bits. In 
programming via C++, the multiplication library executes this process 

automatically. If �	0� is rational, the image of �	0� contains a finite number 

of distinct values within [0, 1) and the forward orbit of �	0� is eventually 

periodic, with period equal to the period of the binary expansion of �	0�. If 

�	0� is irrational, the image of �	0� contains an infinite number of distinct 

values and the forward orbit of �	0� is never periodic. 

 
Within any sub-interval of [0,1), no matter how small, there are 

therefore an infinite number of points whose orbits are eventually periodic, 

and an infinite number of points whose orbits are never periodic. This 
sensitive dependence on initial conditions is a characteristic of chaotic maps. 

This is analogous to the question which arises in the RSA cryptosystem with 

regards to how many primes does there exist; which is answered via the 

Prime Number Theorem. 
 

Theorem 1.1 (Prime Number Theorem) 

 
Let π(x) be the prime-counting function that gives the number of primes less 

than or equal to x, for any real number x. As �  ∞, 

 

E	��~ �
ln � 

 
Thus, there are enough primes for the RSA algorithm to utilize. 

 

The analogue to the above question for the beta-transformation is: 

“how many orbits with large cycles are available?” It is to be noted here that 

the importance to have orbits with large cycles is to avoid attacks 

manipulating the size of the cycle.  
 

The answer to this question is answered by the following theorem. 
 

Theorem 1.2 (Prime Orbit Theorem for the beta-transformation. 

M.R.K.Ariffin [10]) 

Let G be a closed orbit of the beta-transformation. Let H	G� denote the length 

of the orbit. Let E�	I� � J#GL  | HMGLN O I for P � 1,2,3, … Q denote the 
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number of closed orbits for the beta-transformation with a cycle less or equal 

to N. Then as I  ∞, 
 

E�	I�~ �RS�

I	� : 1� 

 

The lower and upper bounds are given by the following Chebychev-type 
estimation. 

 

Corollary 1.3 (M.R.K.Ariffin [10]) 

 

There exists constants T� , T, ' 0 such that 

 

T�
�RS�

I	� : 1� O E�	I� O T,
�RS�

I	� : 1� 

 

 

THE ���-CRYPTOSYSTEM 

We utilize the beta-transformation given by definition 3.1, to 

define the following ��� function. But first we will define the set of 

binary strings of length k. 

Definition 2.1 

The set of binary strings with a length of k bits is given by U�V �
JW � 9XY<YZ�� [  XY - 90,1< Q where � � 1,2,3, …. 

 

In the ���-cryptosystem we will treat the binary string W - U�V 

as a vector of k-dimension. We will use the notation 

W� � 	X�, X�, X,, … , X��. For W�, W, - U�V  the act of concatenating the 2 

strings of binaries is the act of joining 2 vectors. From the 

parallelogram law we have the following diagram: 
 

 

 

 

Figure 1 

 

W����� 

W����� 

W,���� 

W,���� 
W,���� � W����� 

W����� � W,���� 
A B 

C 
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Example 2.1:  

Let W� � 11001100 and W, � 11100100. Concatenating the 2 strings 

we have the following results: 

 

W�W, � 1100110011100100  and  W,W� � 1110010011001100. 

Adding the 2 strings as vectors (modulo 2 addition) we have the 

following result: 

 

W����� � W,���� � 101000 � W,���� � W����� 
Definition 2.2 

Let �, � ' 0 and  � \ �. The function ���M�	>�N is defined as 

 

�	> � 1� � ���M�	>�N � ]3�	>� � ��	> : 1�4	mod 1�, XY � 0
3��	>� � �	> : 1�4	mod 1�, XY � 1 ̂

where > � 0,1,2, …, �	:1� � 0, ��	> : 1�, ��	>� are evaluated via the 

beta-transformation and W � 9XY<YZ��  is the binary string. 
 

Theorem 2.1 

Let W�, W, - U�V. Let W�W, and W,W� represent concatenated strings of binaries. 

For a particular �	0�, 

 

��� _1_2M�	0�N � ��� _2_1M�	0�N 

Proof: 

We will take W�, W, - U�V to be represented as vectors W����� and W,����. By definition 

2.1, the act of concatenating will be taken as the act of joining 2 vectors. By 

the parallelogram law it is obvious that 

 

��� _1�����S_2�����M�	0�N � ��� _2�����S_1�����M�	0�N or 

��� _1_2M�	0�N � ��� _2_1M�	0�N a 

Remark 2.1 

Theorem 2.1, proves that by taking either concatenated vectors of the form 

W����� � W,���� or W,���� � W����� would result in the exact same output when operated with 

the ��� function given by definition 2.2. 
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The result given by theorem 2.1, does not give the value of the 

shared key. The shared key is derived together with the ��� function by 

utilizing the full path to be taken by the string of bits. Refer to figure 1.That 

is, we will evaluate the ��� function with W����� � W,���� � �b������ � bc������ and not the 

equivalent W����� � W,���� � �c������. 
 

We will now present the ���-cryptosystem. We will use the 

following flow chart. The addition “+” notation refers to the basic arithmetic 

operation of adding and the subtraction “-” notation refers to the basic 

arithmetic operation of subtracting. The generator point �	0� will be an 

irrational number taken from the interval 	0,1�. In this section we will 

assume that the ���-cryptosystem is working on the continuum. We will 

discuss the discretized ���-cryptosystem in another paper. 

 
We will use the Malay characters “Along” and “Busu”. Along will 

first generate a public key de by utilizing the the generator point �	0� that 

was agreed upon in public prior to the communication process before 
transmitting it to Busu via an insecure channel. Busu will then generate an 

encrypt key via Along’s public key dfe and also generates his own public 

key df also by utilizing �	0�. Busu will then proceed to encrypt his message 

by utilizing the basic arithmetic operation of addition and will transmit the 

ciphertext consisting of 	df, g � dfe�. 

 

Along will then utilize Busu’s public key to generate the decrypt key 

def. And since def � dfe Along will proceed to decrypt the ciphertext by 

utilizing the basic arithmetic operation of subtraction g � :def � g � dfe. 

The mechanism is akin to the ECC, thus opening areas of research which are 

comparable to ECC. 
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Along Busu 
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                                                                  (20) 
                                                         

                                                        

                                                       (30)        
                                                                              
                                                     

 

 

 

 

 

 

 

                                                       (100)                                                                   

                                                       

               
                                                       (110)    
 

 
 (120)                                (120) 

 

 

 

 

 

 
                                                                     (40) 
                                                         

               

(50) 

 

                                                  

 

 

           (60) 
   

 

 

                                                          (70)  
 

 
                                                                       

                                                                     (80) 

 

                                (90) 

 

Along generates the decrypt 

key def � ���hi	df�. 

Along decrypts: 

 :def � g � dfe � g. 

Along receives 	df , g � dfe�. 

END 

Busu receives de . 

Busu generates a random 

private key  
f. 

Busu generates an encrypt key 

via the ��� function,    

dfe � ��� hj	de�. 

Busu generates public key 

via the ��� function,  

df � ���hjM�	0�N. 

Busu encrypts a 

message g:  g � dfe.  

Busu transmits  the  ciphertext 

 	df , g � dfe� to Along. 

START 

Along generates a random 

private key 
e . 

Along generates a public key 

via the ��� function, 

de � ��� hiM�	0�N. 

Along transmits de  to Busu. 
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We will now give a 32-bit example of key exchange by utilizing the 

generator point is �	0� � 0xC83C59C0 � 0.78217087686061859. We 

will take � � 2 and � � 3. 

 
Along 

i. Along generates an 8-bit private key 
e � 0x000000B3 � 10110011. 

ii. Along generates a public key de � ���
hiM�	0�N � 0xF152AA40 �

 0.94266761839389801. 

iii. Along sends de to Busu. 

 
Busu 

i. Busu generates an 8-bit private key 
f � 0x000000B7 �  10110111. 

ii. Busu generates a public key df � ���
hjM�	0�N � 0x9625EEC0 �

 0.58651630580425262. 

iii. Busu sends  df to Along. 

 
Along 

i. Along generates the shared key def � ���
hi	df� � 0x6FD74540 �

 0.4368785172700882. 

 

Busu 

i. Busu generates the shared key dfe � ���
hj	de� � 0x6FD74540 �

 0.4368785172700882. 

 

The process of encrypting and decrypting is trivial. 
 

The Hard Mathematical Problem  

We will now proceed to formalize the hard mathematical problem for the 

���-Cryptosystem.  

 

Determine the exact sequence W - U�V such that ��� _M�	0�N � v where 

�	0� and v are public parameters. 

 

Remark 2.2  

Based on the example above, for implementation purposes, we will utilize 

the fact that any “number” has its binary representation. As an example 

depending on the “type” of “number” one wants to utilize, the binary 1011,  
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can either be the integer 11�� or the decimal number 0.6875��. We will 

discuss the implementation techniques in another paper. 

 

 

THE ���-FUNCTION IS A ONE-TO-ONE FUNCTION UNDER 

MINIMUM CONDITIONS 

In tandem with the characteristics of the popular Diffie-Hellman key 

exchange methodology, we should choose a generator that has the 
“maximum” order. In the case of the Diffie-Hellman key exchange, the 

generator g from the congruence relation � w xy	mod {� is of order {.  

 

Theoretically, if an irrational number �	0� is chosen within the 

interval 	0,1� its order (i.e. period) is infinity when iterated via the beta-

transformation. However, in real life implementation we will choose an 

irrational number �	0� with a finite binary representation. As an example, let 

us choose a j-bit irrational number �L	0�. The question is: “What is the cycle 

of �L	0� under the ��� function?” Mathematically, the problem statement is: 

 
“Does there exist 2 non-identical sequences of equal length W� , W, - U�V  such 

that  

��� _1 |�L	0�} � ��� _2 |�L	0�} ? " 

 

We will first state the following definition. 
 

 

Definition 3.1 

Let W - U�V and ��� be the function as defined in definition 2.2, the 

expansion ��� _	1� � vW� is known as the symbolic representation of the 

��� function generated by s.  

 

From the above definition we will observe the “symbolic representation” of a 

4-bit key and its value for selected � and �. 
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Binary string Symbolic representation 

Symbolic 
representation value 

� � 1, � � 2 

Symbolic 
representation value 

� � 2, � � 3 

1000 � � � � 2�� � �, 8 21 

1001 � � � � �� � ��, � �, 13 38 

1010 �, � 2�� � �, � � 11 28 

1011 � � � � ��, � �, � �� 19 59 

1100 � � �� � ��, � �, � 1 12 36 

1101 � � ��, � �, � �� � 1 19 58 

1110 �� � ��, � 2� � � 17 53 

1111 �� � 3�, � 1 29 109 

 
 

Lemma 3.1 

If W - U�V,  �	0� is an irrational number within the interval 	0,1� and ��� is a 

function as defined in definition 2.2, then with the correct choice of � and � 

the cycle of �	0� when utilized by the ��� function is 2���. 

 

Lemma 3.2 

If W - U�V and ��� is a function as defined in definition 2.2, then 

��� _M�	0�N � ��� _	1� · �	0�; where �	0� is an irrational number within 

the interval 	0,1�. 
 

Theorem 3.1 

Let W - U�V , ��� _	1� � vW� is unique. 
 

Proof: 

Assume for 2 non-identical sequences W�, W, - U�V we have: 

 
��� _1	1� � ��� _2	1�. 

 
Choose a third sequence W� - U�V where W� \ W, \ W�. By the parallelogram 

law the concatenated vectors: 
 

W�W� \ W,W�, 
because   W� \ W,. 
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Thus, 

��� _1_�	1� \ ��� _2_�	1�. 
 

This is a contradiction. Thus, the assumption is false.a 
 

Corollary 3.1 

 

Let W - U�V and �	0� - 	0,1� be the generator point. There exists � and � 

such that the output ��� _M�	0�N � v is unique. 

 

Proof: 

For W - U�V let 9vW�Y	�, ��<YZ���� be the set of all symbolic representations of 

��� _	1�. Let 9gY	�, ��<YZ���� be the value of each symbolic representation for 

particular � and �. Choose � and � such that g�	�, �� \ g,	�, �� \ � \
g���	�, �� which implies that the output ��� _M�	0�N � v is unique. a 

 

Remark 3.1 

 

Observe that, for the correct choice of value for � and �, ��� is a one-to-one 

function. It is obvious that for 2 non-identical sequences of different lengths 

W� - U�V  and W, - U�V  we can prove mathematically that for a j-bit irrational 

number �L	0� 

��� _1 |�L	0�} \ ��� _2 |�L	0�}. 
 

 

CONCLUSION 

 
In this paper we have disclosed a public key cryptosystem that utilizes 

the chaotic beta-transformation. It is neither a variant of the RSA nor ECC 

algorithm. We utilized the method of concatenating 2 strings of binaries as 

was introduced by Bose who did not provide a mathematical explanation. 
However, we were careful not to repeat Bose’s mistake of utilizing 2 

commutative functions. We still utilize 2 linear functions with the extra 

property that they are not commutative, but through the recurrence relation 
they provide a secure key exchange method, and this overcomes the attack 

that Bose’s method was exposed to.  

 
We also observe the fact that in order for an attacker to determine the 

private key string of binaryW - U�V, from the public key e the attacker has to 

have all the binary positions in the correct order. Hence, making it possible 
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for further research to determine whether this cryptosystem can only utilize a 

private key of length 128-bits and thus having the same key strength as a 
symmetric cryptosystem. 

 

Remarks 

The authors welcome any comments on the cryptosystem especially with 

regards to the implementation of floating numbers � - 	0,1� on finite 

machines. The authors are finalizing a paper discussing the matter and will 

disclose a concrete and scientific method of utilizing such floating numbers 
via its base 2 representation. 
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