
International Journal of Cryptology Research 1 (1): 103-114 (2009)

Crazy: A New 256-Bit Compression Function for Hash Algorithm

1
Zhimin Li,

1
Bo Yang,

1
Lin Li,

1
Shihui Zheng,

1
Yixian Yang,

2
Zhihui Zhang

1
Information Security Center State Key Laboratory of Networking and

Switching Technology

 Beijing University of Posts and Telecommunications,

Beijing 100876, China
2
Sony (China) Research Laboratory, Beijing 100080, China

Email: lizhmin@gmail.com

ABSTRACT

In this paper, we present a { }
256

0,1 x { } { }
512 256

0,1 0,1→ collision resistant

compression function—Crazy, which can be used to design secure and efficient hash
function. The inspiration of Crazy is from known attacks on current hash functions.
Difference diffusion in the step function is so fast that the step function can be viewed
as a random function after two steps. With the analysis we have done, we conjecture
that it can resist all known cryptanalytic attacks applied to the compression functions.
In addition, under the Merkle-Damgård iterative structure, the software performance
of Crazy is 48% faster than that of SHA-256.

 INTRODUCTION

A cryptographic hash function is usually composed by an iterative
structure and a compression function, and a cryptographic iterative hash
function F(·) with an n-bit output is assumed to have three security
properties.

• Collision resistance: An attacker should not be able to find a pair of
messages M and M' such that F(M)=F(M') with less than about 2n/2
work.

• Preimage resistance: Given an output h in the range of the hash
function, an attacker should not be able to find a message M such that
h=F(M) with less than about 2n work.

• Second preimage resistance: Given one message M which is divided
into about 2k blocks for processing in F, an attacker should not be
able to find a second message M' to satisfy F(M)=F(M') with less than
about 2n-k work (This complexity was updated by NIST in their
“SHA-3” competition call [21] and their special publication for
“Recommendation for Using Approved Hash Algorithms” [20]).

The Merkle-Damgård iterative structure [3,18] is the most widely used

for building a cryptographic hash function, as it gives a simple
transformation that maintains the collision resistance property of the
underlying compression function, such as MD5 [22] and SHA-1/256/512

Zhimin Li et al.

International Journal of Cryptology Research

104

[19] etc. Before 2004, there were few attacks on these known hash
functions. However, in 2004 and 2005, a flood of cryptanalytic results [1, 2,
23-26] washed away most of the practical hash functions. Besides these
cryptanalytic attacks applied to the compression function, there are also
some generic attacks applied to the Merkle-Damgård iterative structure
directly. These generic attacks aim to violate some properties other than
collision resistance, and are attacks working on n-bit hash function with
more than 2n/2 and much less than 2n work. Examples of generic attacks are
Joux multi-collisions [8], Kelsey and Schneier generic long-message 2nd
preimage attacks [9], Kelsey and Kohno herding attacks [10]. To resist these
generic attacks, people should try to improve the Merkle-Damgård iterative
structure or design some new structures. Considering the cryptanalytic attack
applied to the compression function which can turn into an attack on the
whole hash function, we'd better design a compression function with good
diffusion effect. From the known cryptanalytic attacks applied to the
compression functions, we found that all the attacked compression functions
share the characteristic flaw of slow difference diffusion. Even for SHA-
256, which is recommended for using by NIST, it is also much different
from a random function within 7 steps (test result is listed in Figure 2. Then
we want to know whether we could construct a compression function which
diffusion effect surpasses these compression functions decisively. Designing
a compression function used in hash function, we usually want to have a
clear structure, and try to prove some mathematical theorems about their
cryptographic properties. However, unfortunately, clean mathematical
structure of such schemes can also help the attacker in his attempt to find an
attack which is faster than exhaustive search. To resist attack, we have to use
“crazy” combination of operations which belong to different domains and
mix them such that difference in one bit would bring the change of many
bits as soon as possible. Furthermore, we hope that these changes propagate
so fast that the attacker can not find an effective attack. Thus, in this paper,
we propose a new compression function—Crazy which has the following
design goals:

• It should have a 256-bit output because the security is recommended
as the computing power increases.

• Its structure should be resistant against known attacks [1, 2, 11, 14-
16, 23-26].

• Under the Merkle-Damgård iterative structure, the performance
should be better than that of SHA-256.

The rest of this paper is organized as follows. In Section 2, we describe

the algorithm and give the design principles based on both security and
efficiency. Security analysis is discussed in Section 3. Then, in Section 4, we
compare the total number of operations and the software performance with

Crazy: A New 256-Bit Compression Function for Hash Algorithm

International Journal of Cryptology Research

105

SHA-256. Summary remarks are given in Section 5. Finally, we give the
process of Crazy in Appendix A.

DESCRIPTIONS AND DESIGN PRINCIPLES

Notations

There are some basic notations and functions used in Crazy, —addition

mod 232, ⊕ —XOR (exclusive or), || —concatenation, A
>>>s—s-bit right

rotation for a 32-bit word A.
Crazy uses four invertible logical functions, where each function operates on
a 32-bit word which is represented as x. The result of each function is a new
32-bit word.

11 14 3 8 21

0 1

6 23 2 17 27

2 3

() , () ,

() , () .

f x x x x f x x x x

f x x x x f x x x x

>>> >>> >>> >>> >>>

>>> >>> >>> >>> >>>

= ⊕ ⊕ = ⊕ ⊕

= ⊕ ⊕ = ⊕ ⊕

 (1)

Before computation begins, the initial value H
(0) must be set. Here we

choose the first thirty-two bits of the fractional parts of the square roots of
the first eight prime numbers. In addition, Crazy uses a sequence of twenty-
four constant 32-bit words, K0, K1, … , K23, in the message expansion and
thirty-two constant 32-bit words, K24, K25, … ,K55, in the step function.
These words represent the first thirty-two bits of the fractional parts of the
square roots of the following fifty-six prime numbers.

Structure of Step Function

Figure 1 depicts the step function of Crazy. In one step, two expansion
words are used without intersection such that the difference introduced can
not vanish in one step. In addition, we can found that Crazy has a different
characteristic compared with other compression functions used in known
hash functions. That is, the expansion word does not operate on any register
directly. This feature will add the difficulty of difference control in the step
function. For example, given a modular difference in the register a, if the
attacker wants to eliminate the difference, he should modify W2j+1, unless the
register f has the same modular difference and the register h has the
corresponding XOR difference, he will introduce new difference in the
register f and h.

Zhimin Li et al.

International Journal of Cryptology Research

106

Figure 1: Computational graph of the step function

 Figure 2: Step Dependence of the Avalanche

Factor (When There is One Bit Input Difference）

f0

f1W2

K2

U1 U2

V1 V2

Figure 3: Computational
graph of the FA structure

Through tests, we found that the step function of Crazy may be seen as a
random function after two steps. We also compare the diffusion effect of
Crazy with the compression functions of MD4, MD5 and SHA-256, and the
test results are listed in Figure 2. (In [4], Daum used the avalanche factor
ranged from 0 to 1, to compare the avalanche effect of step function of
different hash functions. If the avalanche factor equals to 0/1, the function is
seemed as a constant function/random function. In addition, “ITE” means

the step function which Boolean function is ΙΤΕ(, ,)x y z xy xz= ⊕ .) The

reason of the fast diffusion of Crazy is the special structure used in the step
function which is also the kernel of the step function; we call it Function-
Addition (FA) structure, shown in Figure 3. Function f0 and f1 used in the FA
structure are the functions depicted above and W2 is an expansion word
subblock, K2 is a constant subblock. The main feature of the FA structure is

Crazy: A New 256-Bit Compression Function for Hash Algorithm

International Journal of Cryptology Research

107

that, each output subblock depends on every input register subblock, but
only the left output subblock depends on the message subblock, so
difference in the register subblock can propagate successfully through the
right line.

Message Schedule

Message schedule in the compression function of known hash functions
usually have two kinds: one is message permutation, and the other is
message expansion. To resist message modification technology, using
message expansion seems to be better, as in a hash function with message
expansion, the number of used times of each message are much more than
that used in a hash function with message permutation. So we choose
message expansion to do Crazy's message schedule.

Crazy has a “crazy” message expansion that Crazy uses step function to do
message expansion such that each expansion word should be fully affected
by every message. Then message modification will be very complex, even
impossible. In the process of message expansion, we use initial value to help
message expansion. The purpose is to strengthen the diffusion of the
message and add the computation complexity of pseudo collision and multi-
block collision. For the good diffusion effect of the step function, it is not
necessary to have many expansion words like SHA family, and we think
thirty-two expansion words are enough.

In the expansion course, message words are ordered following two

permutations, 1 23 1(mod16), 7 (mod16),0 15,
i i

iπ π= + ≤ ≤ and initial values

are ordered following permutation ρ = 5j (mod8), 0 7j≤ ≤ . The

permutations of message words and initial values are designed such that two
message words/initial values that are used “closely” in the step function are
far apart in the message expansion.

Rotation in Step Function

In Crazy, we have four invertible logical functions (1), and they have the

same structure as 0 1 2 ,
i i i

s s s

i
f x x x

>>> >>> >>>
= ⊕ ⊕ 0,1, 2,3.i = We consider all 4960

cases for s0 , s1 and s2, and choose the one which can make the diffusion
effect of each f and their combinations as well as possible. Besides these
logical functions, there are three single right rotations (t1=7, t2=9, t3=1) in
the step function. The principles for choosing t1 and t2 are mainly from the
points of difference diffusion. Given one bit difference of one registers, for
each choice of t1 (let t2=0, t3=0), we record the change of the output
difference of the registers after proceeding two steps. At last, we choose t1=7
and t2=9 (similar tests like t1) which are coprime with 32 and different from

Zhimin Li et al.

International Journal of Cryptology Research

108

sj
i, s2

i-s1
i and s1

i-s0
i, i=0,1,2,3, j=0,1,2. The principles for choosing t3 are

from the points of cryptanalysis view. In the step function of Crazy,
difference in the fore-step should be maintained to the next step, it is good
from the points of diffusion view. However, it has a worst case that, if the
corresponding registers which are combined before using in the FA structure
have the same or negative differences, these differences might be neutralized
before going into the FA structure. As a result, the output difference of this
step is the same as that of the forward step. The simplest case is that, all the
registers have one bit difference in their most significant bit. To solve this
problem, we add a rotation on the computation line of the register d.
Through test, we found that only one bit rotation is enough, so we choose
t3 =1.

SECURITY ANALYSIS OF CRAZY

As we propose a secure compression function, here we focus on the
collision resistance of Crazy and consider all cryptanalytic attacks applied to
the compression functions of known hash functions. Firstly, we will show
the difference diffusion in Crazy.

Collision Analysis of Known Hash Functions

To derive a collision/near collision, different compression functions have
different analysis methods. For MD4 Family (MD4, MD5, HAVAL, SHA-
0/1 etc), the universal method is that, firstly, finding local collision without
thinking about the details of the message schedule, in this process, all
nonlinear components of the compression function are approximated by
some suitable linear functions. Once a local collision is obtained, the
attacker attempts to find a collision for the full hash function by taking into
account the message schedule and the nonlinear behavior in the compression
function. According to the properties of the step function, some techniques
are used to improve the collision search methods, such as neutral bits used in
the collision search for SHA-0/1 [1, 2], message modification techniques
used for all these MD4 Family [23-26]. In the cryptanalysis of Reduced-
Round Tiger [11, 15], there also exists local collision, but for its special
message schedule, the main cryptanalysis tool is message modification
technique. FORK-256 is a dedicated hash function that produces a 256-bit
digest. The original version of FORK-256 was presented in the first NIST
hash workshop and at FSE 2006 [6]. Some analyses have been done, and the
most significant attack result is of Matusiewicz, Contini and Pieprzyk's [14].
They used the fact that function f and g used in the step function are not
bijective and found collision of full FORK-256 with complexity of 2108. In
response to these attacks, the authors of FORK-256 proposed a new version
of FORK-256 [7], which is supposedly resistant to these attacks. However,

Crazy: A New 256-Bit Compression Function for Hash Algorithm

International Journal of Cryptology Research

109

Markku-Juhani O. Saarinen gave a novel and surprisingly simple analysis on
the new FORK-256 [12]. He used the observations that each branch of the
compression function uses each message word exactly once such that
message words which are scheduled for the last steps do not affect all output
words. And he gave a 2112.9 collision attack against the FORK-256 hash
function both new and original versions.

These attacks above all have in common that the attacker has the ability to
control difference diffusion in some special cases. The relatively slow
diffusion of the step function gives the attacker chance to utilize the weak
properties of the step function and the flaws in the message schedule fully.
In the following, we will show the difference diffusion in Crazy. The good
diffusion effect will make these attacks very difficult.

Difference Diffusion in Crazy

Without considering the message expansion, assuming that the attacker can
modify message arbitrarily, we change addition into bitwise XOR operation
in the step function of Crazy. When the attacker inserts one difference into
the most significant bit of the first expansion word W[0], Table 1 shows the
change of the corresponding registers and the corresponding modification of
the following expansion words. The numbers in the entries of the table
denotes the bits in which the difference exists. Let ∆W[j] be the difference of
W[j], ∆a

s (∆b
s, …, ∆h

s) be the sth step input difference of a(b, …, h).

TABLE 1: Differences Diffusion in Crazy

Step(s) 0 1 2 1 2

∆W[2s] 31 1,7,9,10,12,14,

20,21,22,27,28,

29,30,31

∆W[2s+1] 0,1,3,4,6,8,18,

19,22,25,28,29,

30,31

∆a
s
 0,1,3,4,6,8,18,19,22,

25,28,29,30,31

∆b
s
 4,5,6,8,9,10,12,17,23

,27,29,30,31

 0,4,5,8,10,12,

1318,23,26, 28

∆c
s
 31 1,7,9,10,12,14,20,21,

22,27,28,29,30,31

31

∆d
s
 8,10,12,13,17,23,26,

28

 8,10,12,13,17,

23, 26,28

∆e
s
 30 0,6,8,9,11,13,19,20,

21,26,27,28,29,30

30

Zhimin Li et al.

International Journal of Cryptology Research

110

∆f
s
 31 4,5,6,8,9,10,12,20,

23,28,29

31 1,6,7,13,16,20,

21,22,23,29,

31

∆g
s
 0,1,3,4,6,8,18,19,22,

25,28,29,30

 31

∆h
s
 4,5,6,8,14,28,29,30 4,5,6,8,14,28,

29,30

In the forth column of Table 1, we use no message modification to control
the differences diffusion, we can find that all the registers should be changed
after two steps. Moreover, for the asymmetry of the combination of the
registers, though the FA structure “XORing” the same bits into two output
registers, XORing those registers in the next step (,a d⊕ ,b c⊕ ,e h⊕ f g⊕)

do not remove the non-linear contribution from the FA-structure or make
differences disappear. And in the sixth column, we control the difference
diffusion without thinking about the number of modified bits of the
expansion words. Since Crazy has a special structure that no register is
affected by message directly, five registers must be changed in the third step
at least. Though people can control six register values (except for the
register d and the register h) through modifying the corresponding expansion
words, he should know that one word would affect three registers in one step
simultaneously. Once he corrected the value of one register, other two
registers must be changed.

In this linear variant of Crazy, we can find local collision using the
properties of the logical function (using 0xFFFFFFFF as inserted difference
for some messages). However, we do not know how to change it to a real
local collision for Crazy. And we haven't found a local collision so far.
Moreover, for Crazy's special expansion, people can not modify message so
arbitrarily.

Invertibility of Crazy

From the analysis depicted above, we can found that Crazy has a well and
“indestructible” diffusion effect. Unfortunately, mass and asymmetry
combination of operations also make the step function of Crazy seem to be
not invertible. Although we haven't found one step collision (for fixed
message) so far, we cannot prove the invertibility of Crazy. However, this
does not directly give rise to proper collision attacks. On one hand, through
analysis, we found that the computational complexity of finding preimage of
one step of Crazy is 264, which is too high to utilize. On the other hand, even
if people can find one step collision for some register values and messages,
using this one step collision in a real attack is still very hard. For a meet-in-
the-middle attack, since the output values of the step function are all affected

Crazy: A New 256-Bit Compression Function for Hash Algorithm

International Journal of Cryptology Research

111

by the input register values and two of them are only affected by the input
register values in one step, the attacker cannot control the values of them
arbitrarily through changing the values of the expansion words. For a pseudo
collision attack, since the initial values are used to help message expansion,
different initial values will result in different expansion words.

As the FA structure used in Crazy we spent more than two months to try all
the analysis methods we could do, however we have little evolution. In
addition, the fact that we use initial value to help message expansion can
amplify the security of resisting multi-block collision. When the complexity
of finding one block collision is too high, people consider two blocks and
even more to reduce the complexity, and the complexity of a multi-block
collision is not much larger than that of a near collision of one block.
However, even if people can find near collision of one block in Crazy, the
analysis on the second block should be more complex than the first block as
the expansion words which used in the second block have already been
changed. After a period of cryptanalysis on Crazy, we conjecture that Crazy
can resistant against all known attacks up to now.

EFFICIENCY AND PERFORMANCE

In this section, we total the number of operations used in Crazy and
compare it with the compression function of SHA-256. We also compare the
software performance of Crazy under the Merkle-Damgård iterative
structure with SHA-256.

Results are shown in Table 2.

TABLE 2: Compare Results of Number of Operations used and Software
Realizationof Crazy and SHA-256

 Crazy SHA-256

Addition() 512 600

Bitwise operation(⊕ ,∧,∨) 392 1024

Shift(<<,>>) 96

Rotation(<<<,>>>) 364 576

 Mbps Cycle/Byte Mbps Cycle/Byte

VC++6.0 469.48 28.11 330.33 42.90 PM1.73G/504M

VS2005 676.59 19.51 458.61 30.90

Zhimin Li et al.

International Journal of Cryptology Research

112

SUMMARY

In this paper we have proposed a secure and software-efficient
compression function. The main and novel features of Crazy are listed in the
following:

• Using step function to do message expansion such that message
modification is harder than before.

• To intensify the attack complexity, initial values are introduced to
help the message expansion.

• Difference diffusion in the step function is so fast that message value
can be completely diffused to all the registers after two steps.

• Expansion word does not operate on any register directly, so
difference control is harder than before.

Our software performance results show that Crazy is 48% faster than

that of SHA-256. So if people who want to have higher security, he can add
appropriate expansion words. Crazy looks resistant against all the existing
attacks based on the analysis we have done. Here we invite people to attack
Crazy and will be thankful to receive the results (positive or negative) of any
such attacks. Restricted to the length of paper, we do not give the source
code of Crazy; people who have interesting may send us email.

REFERENCES

[1] Biham, E and R. Chen. 2004. Near Collisions of SHA-0. Advances in

Cryptology-CRYPTO 2004, volume 3152 of LNCS, 290-305.

[2] E. Biham, R. Chen, A. Joux, P. Carribault, C. Lemuet and W. Jalby

2005. Collisions of SHA-0 and reduced SHA-1. Advances in

Cryptology-Eurocrypt 2005, volume 3494 of LNCS, 36-57.

[3] I. Damgård. 1989. A Design Principle for Hash Functions. Advances in

Cryptology-CRYPTO 1989, volume 435 of LNCS, 416-427.

[4] M. Daum. 2005. Cryptanalysis of Hash Functions of the MD4-Family.

PHD thesis Bochum, Mai.

[5] H. Gilbert and H. Handschuh. 2003. Security analysis of SHA-256 and

sisters. Selected Areas in Cryptography 2003, volume 3006 of
LNCS, 175-193.

[6] D. Hong, D. Chang, J. Sung, S. Lee, S. Hong, J. Lee, D. Moon and S.

Chee. 2006. A New Dedicated 256-Bit Hash Function: FORK-256.
Fast Software Encryption 2006, volume 4047 of LNCS, 195-209.

Crazy: A New 256-Bit Compression Function for Hash Algorithm

International Journal of Cryptology Research

113

[7] D. Hong, D. Chang, J. Sung, S. Lee, S. Hong, J. Lee, D. Moon and S.

Chee. 2007. New FORK-256. Cryptology ePrint Archive 2007/185.

[8] A. Joux. 2004. Multicollisions in Iterated Hash Functions. Advances in

Cryptology-CRYPTO 2004, volume 3152 of LNCS, 306-316.

[9] J. Kelsey and B. Schneier. 2005. Second Preimages on n-bit Hash

Functions for Much Less than 2n Work. Advances in Cryptology-

EUROCRYPT 2005, volume 3494 of LNCS, 474-490.
[10] J. Kelsey and T. Kohno. 2006. Herding Hash Functions and the

Nostradamus Attack. Advances in Cryptology-EUROCRYPT 2006,
volume 4004 of LNCS, 183-200.

[11] J. Kelsey and S. Lucks. 2006. Collisions and Near-Collisions for

Reduced-Round Tiger. Fast Software Encryption 2006, volume
4047 of LNCS, 111-125.

[12] M. O. Saarinen. 2007. A Meet-in-the-Middle Collision Attack Against

the New FORK-256. Indocrypt 2007, volume 4859 of LNCS, 86-
100.

[13] K. Matusiewicz, J. Pieprzyk, N. Pramstaller, C.Rechberger and V.

Rijmen. 2005. Analysis of simplified variants of SHA-256.
WEWoRC, volume 74 of LNI, pages 123-134.

[14] K. Matusiewicz, T. Peyrin, O. Billet, S. Contini and J. Pieprzyk. 2007.

Cryptanalysis of FORK-256. Fast Software Encryption 2007,
volume 4047 of LNCS, 19-38.

[15] F. Mendel, B. Preneel, V. Rijmen, H. Yoshida and D. Watanabe. 2006.

Update on Tiger. Indocrypt 2006, volume 4329 of LNCS, 63-79.

[16] F. Mendel, N. Pramstaller, C. Rechberger and Vincent Rijmen. 2006.

Analysis of step-reduced SHA-256. Fast Software Encryption 2006,
volume 4047 of LNCS, 126-143.

[17] F. Mendel, J. Lano and B. Preneel. 2007. Cryptanalysis of Reduced

Variants of the FORK-256 Hash Function. CT-RSA 2007, volume
4377 of LNCS, 85-100.

[18] R. Merkle. 1989. One way Hash Functions and DES. Advances in

Cryptology-CRYPTO 1989, volume 435 of LNCS, 428-446.

Zhimin Li et al.

International Journal of Cryptology Research

114

[19] NIST. 2002. FIPS 180-2, Secure Hash Standard.

[20] NIST. 2007. SP 800-107, Recommendation for Using Approved Hash

Algorithms (Draft).

[21] NIST. 2007. Announcing Request for Candidate Algorithm

Nominations for a New Cryptograhic Hash Algorithm (SHA-3)
Family.

[22] R. Rivest. 1992. The MD5 message-digest algorithm. Internet Request

for Comment RFC 1321, Internet Engineering Task Force.

[23] X. Wang, Y. L. Yin, and H. Yu. 2005. Efficient collision search attacks

on SHA-0. Advances in Cryptology-CRYPTO 2005, volume 3621 of
LNCS, 1-16.

[24] X. Wang, Y. L. Yin and H. Yu. 2005. Finding collisions in the full

SHA-1. Advances in Cryptology-CRYPTO 2005, volume 3621 of
LNCS, 17-36.

[25] X. Wang, X. Lai, D. Feng, H. Chen and X. Yu. 2005. Cryptanalyisis of

the hash functions MD4 and RIPEMD. Advances in Cryptology-

EUROCRYPT 2005, volume 3494 of LNCS, 1-18.

[26] X. Wang and H. Yu. 2005. How to Break MD5 and Other Hash

Functions. Advances in Cryptology-EUROCRYPT 2005, volume
3494 of LNCS, 19-35.

[27] H. Yoshida and A. Biryukov. 2005. Analysis of a SHA-256 variant.

Selected Areas in Cryptograph 2005, volume 3897 of LNCS, 245-
260.

