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ABSTRACT 

In this paper, we present a { }
256

0,1 x { } { }
512 256

0,1 0,1→  collision resistant 

compression function—Crazy, which can be used to design secure and efficient hash 
function. The inspiration of Crazy is from known attacks on current hash functions. 
Difference diffusion in the step function is so fast that the step function can be viewed 
as a random function after two steps. With the analysis we have done, we conjecture 
that it can resist all known cryptanalytic attacks applied to the compression functions. 
In addition, under the Merkle-Damgård iterative structure, the software performance 
of Crazy is 48% faster than that of SHA-256. 

 

 INTRODUCTION 

A cryptographic hash function is usually composed by an iterative 
structure and a compression function, and a cryptographic iterative hash 
function F(·) with an n-bit output is assumed to have three security 
properties. 

 

• Collision resistance: An attacker should not be able to find a pair of 
messages M and M' such that F(M)=F(M') with less than about 2n/2 
work. 

• Preimage resistance: Given an output h in the range of the hash 
function, an attacker should not be able to find a message M such that 
h=F(M) with less than about 2n work. 

• Second preimage resistance: Given one message M which is divided 
into about 2k blocks for processing in F, an attacker should not be 
able to find a second message M' to satisfy F(M)=F(M') with less than 
about 2n-k work (This complexity was updated by NIST in their 
“SHA-3” competition call [21] and their special publication for 
“Recommendation for Using Approved Hash Algorithms” [20]). 

 
The Merkle-Damgård iterative structure [3,18] is the most widely used 

for building a cryptographic hash function, as it gives a simple 
transformation that maintains the collision resistance property of the 
underlying compression function, such as MD5 [22] and SHA-1/256/512 
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[19] etc. Before 2004, there were few attacks on these known hash 
functions. However, in 2004 and 2005, a flood of cryptanalytic results [1, 2, 
23-26] washed away most of the practical hash functions. Besides these 
cryptanalytic attacks applied to the compression function, there are also 
some generic attacks applied to the Merkle-Damgård iterative structure 
directly. These generic attacks aim to violate some properties other than 
collision resistance, and are attacks working on n-bit hash function with 
more than 2n/2 and much less than 2n work. Examples of generic attacks are 
Joux multi-collisions [8], Kelsey and Schneier generic long-message 2nd 
preimage attacks [9], Kelsey and Kohno herding attacks [10]. To resist these 
generic attacks, people should try to improve the Merkle-Damgård iterative 
structure or design some new structures. Considering the cryptanalytic attack 
applied to the compression function which can turn into an attack on the 
whole hash function, we'd better design a compression function with good 
diffusion effect. From the known cryptanalytic attacks applied to the 
compression functions, we found that all the attacked compression functions 
share the characteristic flaw of slow difference diffusion. Even for SHA-
256, which is recommended for using by NIST, it is also much different 
from a random function within 7 steps (test result is listed in Figure 2. Then 
we want to know whether we could construct a compression function which 
diffusion effect surpasses these compression functions decisively. Designing 
a compression function used in hash function, we usually want to have a 
clear structure, and try to prove some mathematical theorems about their 
cryptographic properties. However, unfortunately, clean mathematical 
structure of such schemes can also help the attacker in his attempt to find an 
attack which is faster than exhaustive search. To resist attack, we have to use 
“crazy” combination of operations which belong to different domains and 
mix them such that difference in one bit would bring the change of many 
bits as soon as possible. Furthermore, we hope that these changes propagate 
so fast that the attacker can not find an effective attack. Thus, in this paper, 
we propose a new compression function—Crazy which has the following 
design goals: 

 

• It should have a 256-bit output because the security is recommended 
as the computing power increases. 

• Its structure should be resistant against known attacks [1, 2, 11, 14-
16, 23-26]. 

• Under the Merkle-Damgård iterative structure, the performance 
should be better than that of SHA-256.  

 
The rest of this paper is organized as follows. In Section 2, we describe 

the algorithm and give the design principles based on both security and 
efficiency. Security analysis is discussed in Section 3. Then, in Section 4, we 
compare the total number of operations and the software performance with 
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SHA-256. Summary remarks are given in Section 5. Finally, we give the 
process of Crazy in Appendix A. 

 
 

DESCRIPTIONS AND DESIGN PRINCIPLES 

Notations 

There are some basic notations and functions used in Crazy, —addition 

mod 232, ⊕ —XOR (exclusive or),  || —concatenation, A
>>>s—s-bit right 

rotation for a 32-bit word A. 
Crazy uses four invertible logical functions, where each function operates on 
a 32-bit word which is represented as x. The result of each function is a new 
32-bit word.  

 

 
11 14 3 8 21

0 1

6 23 2 17 27

2 3

( ) , ( ) ,

( ) , ( ) .

f x x x x f x x x x

f x x x x f x x x x

>>> >>> >>> >>> >>>

>>> >>> >>> >>> >>>

= ⊕ ⊕ = ⊕ ⊕

= ⊕ ⊕ = ⊕ ⊕

             (1)                                                                      

 

Before computation begins, the initial value H
(0) must be set. Here we 

choose the first thirty-two bits of the fractional parts of the square roots of 
the first eight prime numbers. In addition, Crazy uses a sequence of twenty-
four constant 32-bit words, K0, K1, … , K23, in the message expansion and 
thirty-two constant 32-bit words, K24, K25, … ,K55, in the step function. 
These words represent the first thirty-two bits of the fractional parts of the 
square roots of the following fifty-six prime numbers. 
 

Structure of Step Function 

Figure 1 depicts the step function of Crazy. In one step, two expansion 
words are used without intersection such that the difference introduced can 
not vanish in one step. In addition, we can found that Crazy has a different 
characteristic compared with other compression functions used in known 
hash functions. That is, the expansion word does not operate on any register 
directly. This feature will add the difficulty of difference control in the step 
function. For example, given a modular difference in the register a, if the 
attacker wants to eliminate the difference, he should modify W2j+1, unless the 
register f has the same modular difference and the register h has the 
corresponding XOR difference, he will introduce new difference in the 
register f and h. 



Zhimin Li et al. 

 

 
International Journal of Cryptology Research 

106 

 
 

Figure 1:   Computational graph of the step function 

 

 Figure 2:  Step Dependence of the Avalanche 

Factor (When There is One Bit Input Difference） 

f0

f1W2

K2

U1 U2

V1 V2

 
 

Figure 3: Computational 
graph of the FA structure 

 
Through tests, we found that the step function of Crazy may be seen as a 
random function after two steps.  We also compare the diffusion effect of 
Crazy with the compression functions of MD4, MD5 and SHA-256, and the 
test results are listed in Figure 2. (In [4], Daum used the avalanche factor 
ranged from 0 to 1, to compare the avalanche effect of step function of 
different hash functions. If the avalanche factor equals to 0/1, the function is 
seemed as a constant function/random function. In addition, “ITE” means 

the step function which Boolean function is ΙΤΕ( , , )x y z xy xz= ⊕ .) The 

reason of the fast diffusion of Crazy is the special structure used in the step 
function which is also the kernel of the step function; we call it Function-
Addition (FA) structure, shown in Figure 3. Function f0 and f1 used in the FA 
structure are the functions depicted above and W2 is an expansion word 
subblock, K2 is a constant subblock. The main feature of the FA structure is 
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that, each output subblock depends on every input register subblock, but 
only the left output subblock depends on the message subblock, so 
difference in the register subblock can propagate successfully through the 
right line.  
 

Message Schedule 

Message schedule in the compression function of known hash functions 
usually have two kinds: one is message permutation, and the other is 
message expansion. To resist message modification technology, using 
message expansion seems to be better, as in a hash function with message 
expansion, the number of used times of each message are much more than 
that used in a hash function with message permutation. So we choose 
message expansion to do Crazy's message schedule. 
 
Crazy has a “crazy” message expansion that Crazy uses step function to do 
message expansion such that each expansion word should be fully affected 
by every message. Then message modification will be very complex, even 
impossible. In the process of message expansion, we use initial value to help 
message expansion. The purpose is to strengthen the diffusion of the 
message and add the computation complexity of pseudo collision and multi-
block collision. For the good diffusion effect of the step function, it is not 
necessary to have many expansion words like SHA family, and we think 
thirty-two expansion words are enough. 
 
In the expansion course, message words are ordered following two 

permutations, 1 23 1(mod16), 7 (mod16),0 15,
i i

iπ π= + ≤ ≤ and initial values 

are ordered following permutation ρ = 5j (mod8), 0 7j≤ ≤ . The 

permutations of message words and initial values are designed such that two 
message words/initial values that are used “closely” in the step function are 
far apart in the message expansion. 
 

Rotation in Step Function 

In Crazy, we have four invertible logical functions (1), and they have the 

same structure as 0 1 2 ,
i i i

s s s

i
f x x x

>>> >>> >>>
= ⊕ ⊕ 0,1, 2,3.i = We consider all 4960 

cases for s0 , s1 and s2, and choose the one which can make the diffusion 
effect of each f and their combinations as well as possible. Besides these 
logical functions, there are three single right rotations (t1=7, t2=9, t3=1) in 
the step function. The principles for choosing t1 and t2 are mainly from the 
points of difference diffusion. Given one bit difference of one registers, for 
each choice of t1 (let t2=0, t3=0), we record the change of the output 
difference of the registers after proceeding two steps. At last, we choose t1=7 
and t2=9 (similar tests like t1) which are coprime with 32 and different from 
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sj
i, s2

i-s1
i and s1

i-s0
i, i=0,1,2,3, j=0,1,2. The principles for choosing t3 are 

from the points of cryptanalysis view. In the step function of Crazy, 
difference in the fore-step should be maintained to the next step, it is good 
from the points of diffusion view. However, it has a worst case that, if the 
corresponding registers which are combined before using in the FA structure 
have the same or negative differences, these differences might be neutralized 
before going into the FA structure. As a result, the output difference of this 
step is the same as that of the forward step. The simplest case is that, all the 
registers have one bit difference in their most significant bit. To solve this 
problem, we add a rotation on the computation line of the register d. 
Through test, we found that only one bit rotation is enough, so we choose    
t3 =1.  

 

SECURITY ANALYSIS OF CRAZY 

As we propose a secure compression function, here we focus on the 
collision resistance of Crazy and consider all cryptanalytic attacks applied to 
the compression functions of known hash functions. Firstly, we will show 
the difference diffusion in Crazy. 
 

Collision Analysis of Known Hash Functions 

To derive a collision/near collision, different compression functions have 
different analysis methods. For MD4 Family (MD4, MD5, HAVAL, SHA-
0/1 etc), the universal method is that, firstly, finding local collision without 
thinking about the details of the message schedule, in this process, all 
nonlinear components of the compression function are approximated by 
some suitable linear functions. Once a local collision is obtained, the 
attacker attempts to find a collision for the full hash function by taking into 
account the message schedule and the nonlinear behavior in the compression 
function. According to the properties of the step function, some techniques 
are used to improve the collision search methods, such as neutral bits used in 
the collision search for SHA-0/1 [1, 2], message modification techniques 
used for all these MD4 Family [23-26]. In the cryptanalysis of Reduced-
Round Tiger [11, 15], there also exists local collision, but for its special 
message schedule, the main cryptanalysis tool is message modification 
technique. FORK-256 is a dedicated hash function that produces a 256-bit 
digest. The original version of FORK-256 was presented in the first NIST 
hash workshop and at FSE 2006 [6]. Some analyses have been done, and the 
most significant attack result is of Matusiewicz, Contini and Pieprzyk's [14]. 
They used the fact that function f and g used in the step function are not 
bijective and found collision of full FORK-256 with complexity of 2108. In 
response to these attacks, the authors of FORK-256 proposed a new version 
of FORK-256 [7], which is supposedly resistant to these attacks. However, 
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Markku-Juhani O. Saarinen gave a novel and surprisingly simple analysis on 
the new FORK-256 [12]. He used the observations that each branch of the 
compression function uses each message word exactly once such that 
message words which are scheduled for the last steps do not affect all output 
words. And he gave a 2112.9 collision attack against the FORK-256 hash 
function both new and original versions.  
 
These attacks above all have in common that the attacker has the ability to 
control difference diffusion in some special cases. The relatively slow 
diffusion of the step function gives the attacker chance to utilize the weak 
properties of the step function and the flaws in the message schedule fully. 
In the following, we will show the difference diffusion in Crazy. The good 
diffusion effect will make these attacks very difficult. 
 

Difference Diffusion in Crazy 

Without considering the message expansion, assuming that the attacker can 
modify message arbitrarily, we change addition into bitwise XOR operation 
in the step function of Crazy. When the attacker inserts one difference into 
the most significant bit of the first expansion word W[0], Table  1 shows the 
change of the corresponding registers and the corresponding modification of 
the following expansion words. The numbers in the entries of the table 
denotes the bits in which the difference exists. Let ∆W[j] be the difference of 
W[j], ∆a

s (∆b
s, …, ∆h

s) be the sth step input difference of a(b, …, h). 
 

TABLE 1:   Differences Diffusion in Crazy 
 

Step(s) 0 1 2 1 2 

∆W[2s] 31   1,7,9,10,12,14, 

20,21,22,27,28,

29,30,31 

 

∆W[2s+1]    0,1,3,4,6,8,18, 

19,22,25,28,29,

30,31 

 

∆a
s
   0,1,3,4,6,8,18,19,22,

25,28,29,30,31 

  

∆b
s
   4,5,6,8,9,10,12,17,23

,27,29,30,31 

 0,4,5,8,10,12, 

1318,23,26, 28 

∆c
s
  31 1,7,9,10,12,14,20,21,

22,27,28,29,30,31 

31  

∆d
s
   8,10,12,13,17,23,26,

28 

 8,10,12,13,17, 

23, 26,28 

 

∆e
s
  30 0,6,8,9,11,13,19,20, 

21,26,27,28,29,30 

 

30  
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∆f
s
  31 4,5,6,8,9,10,12,20, 

23,28,29 

31 1,6,7,13,16,20,

21,22,23,29, 

31 

∆g
s
   0,1,3,4,6,8,18,19,22,

25,28,29,30 

 31 

∆h
s
   4,5,6,8,14,28,29,30  4,5,6,8,14,28, 

29,30 

 
 

In the forth column of Table 1, we use no message modification to control 
the differences diffusion, we can find that all the registers should be changed 
after two steps. Moreover, for the asymmetry of the combination of the 
registers, though the FA structure “XORing” the same bits into two output 
registers, XORing those registers in the next step ( ,a d⊕ ,b c⊕ ,e h⊕ f g⊕ ) 

do not remove the non-linear contribution from the FA-structure or make 
differences disappear. And in the sixth column, we control the difference 
diffusion without thinking about the number of modified bits of the 
expansion words. Since Crazy has a special structure that no register is 
affected by message directly, five registers must be changed in the third step 
at least. Though people can control six register values (except for the 
register d and the register h) through modifying the corresponding expansion 
words, he should know that one word would affect three registers in one step 
simultaneously. Once he corrected the value of one register, other two 
registers must be changed.  
 
In this linear variant of Crazy, we can find local collision using the 
properties of the logical function (using 0xFFFFFFFF as inserted difference 
for some messages). However, we do not know how to change it to a real 
local collision for Crazy. And we haven't found a local collision so far. 
Moreover, for Crazy's special expansion, people can not modify message so 
arbitrarily. 
 

Invertibility of Crazy 

From the analysis depicted above, we can found that Crazy has a well and 
“indestructible” diffusion effect. Unfortunately, mass and asymmetry 
combination of operations also make the step function of Crazy seem to be 
not invertible. Although we haven't found one step collision (for fixed 
message) so far, we cannot prove the invertibility of Crazy. However, this 
does not directly give rise to proper collision attacks. On one hand, through 
analysis, we found that the computational complexity of finding preimage of 
one step of Crazy is 264, which is too high to utilize. On the other hand, even 
if people can find one step collision for some register values and messages, 
using this one step collision in a real attack is still very hard. For a meet-in-
the-middle attack, since the output values of the step function are all affected 
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by the input register values and two of them are only affected by the input 
register values in one step, the attacker cannot control the values of them 
arbitrarily through changing the values of the expansion words. For a pseudo 
collision attack, since the initial values are used to help message expansion, 
different initial values will result in different expansion words.  
 
As the FA structure used in Crazy we spent more than two months to try all 
the analysis methods we could do, however we have little evolution.  In 
addition, the fact that we use initial value to help message expansion can 
amplify the security of resisting multi-block collision. When the complexity 
of finding one block collision is too high, people consider two blocks and 
even more to reduce the complexity, and the complexity of a multi-block 
collision is not much larger than that of a near collision of one block. 
However, even if people can find near collision of one block in Crazy, the 
analysis on the second block should be more complex than the first block as 
the expansion words which used in the second block have already been 
changed. After a period of cryptanalysis on Crazy, we conjecture that Crazy 
can resistant against all known attacks up to now. 
 

EFFICIENCY AND PERFORMANCE 

In this section, we total the number of operations used in Crazy and 
compare it with the compression function of SHA-256. We also compare the 
software performance of Crazy under the Merkle-Damgård iterative 
structure with SHA-256.  
 
Results are shown in Table 2. 

 
 

TABLE 2:  Compare Results of Number of Operations used and Software 
Realizationof Crazy and SHA-256 

 
 Crazy SHA-256 

Addition( ) 512 600 

Bitwise operation( ⊕ ,∧,∨) 392 1024 

Shift(<<,>>)  96 

Rotation(<<<,>>>) 364 576 

 Mbps Cycle/Byte Mbps Cycle/Byte 

VC++6.0 469.48 28.11 330.33 42.90 PM1.73G/504M 

VS2005 676.59 19.51 458.61 30.90 
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SUMMARY 

In this paper we have proposed a secure and software-efficient 
compression function. The main and novel features of Crazy are listed in the 
following: 

 

• Using step function to do message expansion such that message 
modification is harder than before. 

• To intensify the attack complexity, initial values are introduced to 
help the message expansion. 

• Difference diffusion in the step function is so fast that message value 
can be completely diffused to all the registers after two steps. 

• Expansion word does not operate on any register directly, so 
difference control is harder than before. 

 
Our software performance results show that Crazy is 48% faster than 

that of SHA-256. So if people who want to have higher security, he can add 
appropriate expansion words. Crazy looks resistant against all the existing 
attacks based on the analysis we have done. Here we invite people to attack 
Crazy and will be thankful to receive the results (positive or negative) of any 
such attacks. Restricted to the length of paper, we do not give the source 
code of Crazy; people who have interesting may send us email. 
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